1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
use crate::{
    module::ModuleRegistry, signatures::SignatureCollection, trampoline::StoreInstanceHandle,
    Engine, Func, Module, ResourceLimiter, ResourceLimiterProxy, Trap, DEFAULT_INSTANCE_LIMIT,
    DEFAULT_MEMORY_LIMIT, DEFAULT_TABLE_LIMIT,
};
use anyhow::{bail, Result};
use std::any::{Any, TypeId};
use std::cell::{Cell, RefCell};
use std::collections::{hash_map::Entry, HashMap};
use std::convert::TryFrom;
use std::fmt;
use std::future::Future;
use std::hash::{Hash, Hasher};
use std::pin::Pin;
use std::ptr;
use std::rc::Rc;
use std::sync::Arc;
use std::task::{Context, Poll};
use wasmtime_runtime::{
    InstanceAllocator, InstanceHandle, ModuleInfo, OnDemandInstanceAllocator, SignalHandler,
    TrapInfo, VMCallerCheckedAnyfunc, VMContext, VMExternRef, VMExternRefActivationsTable,
    VMInterrupts, VMTrampoline,
};

/// Used to associate instances with the store.
///
/// This is needed to track if the instance was allocated explicitly with the on-demand
/// instance allocator.
struct StoreInstance {
    handle: InstanceHandle,
    // Stores whether or not to use the on-demand allocator to deallocate the instance
    ondemand: bool,
}

/// A `Store` is a collection of WebAssembly instances and host-defined items.
///
/// All WebAssembly instances and items will be attached to and refer to a
/// `Store`. For example instances, functions, globals, and tables are all
/// attached to a `Store`. Instances are created by instantiating a
/// [`Module`](crate::Module) within a `Store`.
///
/// `Store` is not thread-safe and cannot be sent to other threads. All items
/// which refer to a `Store` additionally are not threadsafe and can only be
/// used on the original thread that they were created on.
///
/// A `Store` is not intended to be a long-lived object in a program. No form of
/// GC is implemented at this time so once an instance is created within a
/// `Store` it will not be deallocated until all references to the `Store` have
/// gone away (this includes all references to items in the store). This makes
/// `Store` unsuitable for creating an unbounded number of instances in it
/// because `Store` will never release this memory. It's instead recommended to
/// have a long-lived [`Engine`] and instead create a `Store` for a more scoped
/// portion of your application.
///
/// # Stores and `Clone`
///
/// Using `clone` on a `Store` is a cheap operation. It will not create an
/// entirely new store, but rather just a new reference to the existing object.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Stores and `Default`
///
/// You can create a store with default configuration settings using
/// `Store::default()`. This will create a brand new [`Engine`] with default
/// ocnfiguration (see [`Config`](crate::Config) for more information).
#[derive(Clone)]
pub struct Store {
    inner: Rc<StoreInner>,
}

pub(crate) struct StoreInner {
    engine: Engine,
    interrupts: Arc<VMInterrupts>,
    instances: RefCell<Vec<StoreInstance>>,
    signal_handler: RefCell<Option<Box<SignalHandler<'static>>>>,
    externref_activations_table: VMExternRefActivationsTable,
    modules: RefCell<ModuleRegistry>,
    // The signatures and trampolines for `Func` objects
    signatures: RefCell<SignatureCollection>,
    // Numbers of resources instantiated in this store.
    instance_count: Cell<usize>,
    memory_count: Cell<usize>,
    table_count: Cell<usize>,
    /// An adjustment to add to the fuel consumed value in `interrupts` above
    /// to get the true amount of fuel consumed.
    fuel_adj: Cell<i64>,
    #[cfg(feature = "async")]
    current_suspend: Cell<*const wasmtime_fiber::Suspend<Result<(), Trap>, (), Result<(), Trap>>>,
    #[cfg(feature = "async")]
    current_poll_cx: Cell<*mut Context<'static>>,
    out_of_gas_behavior: Cell<OutOfGas>,
    context_values: RefCell<HashMap<TypeId, Box<dyn Any>>>,
    limiter: Option<Rc<dyn wasmtime_runtime::ResourceLimiter>>,
}

#[derive(Copy, Clone)]
enum OutOfGas {
    Trap,
    InjectFuel {
        injection_count: u32,
        fuel_to_inject: u64,
    },
}

struct HostInfoKey(VMExternRef);

impl PartialEq for HostInfoKey {
    fn eq(&self, rhs: &Self) -> bool {
        VMExternRef::eq(&self.0, &rhs.0)
    }
}

impl Eq for HostInfoKey {}

impl Hash for HostInfoKey {
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        VMExternRef::hash(&self.0, hasher);
    }
}

impl Store {
    /// Creates a new [`Store`] to be associated with the given [`Engine`].
    ///
    /// The created [`Store`] will place no additional limits on the size of linear
    /// memories or tables at runtime. Linear memories and tables will be allowed to
    /// grow to any upper limit specified in their definitions.
    ///
    /// The store will limit the number of instances, linear memories, and tables created to 10,000.
    ///
    /// Use [`Store::new_with_limits`] with a [`StoreLimitsBuilder`](crate::StoreLimitsBuilder) to
    /// specify different limits for the store.
    pub fn new(engine: &Engine) -> Self {
        Self::new_(engine, None)
    }

    /// Creates a new [`Store`] to be associated with the given [`Engine`] and using the supplied
    /// resource limiter.
    ///
    /// A [`ResourceLimiter`] can be implemented by hosts to control the size of WebAssembly
    /// linear memories and tables when a request is made to grow them.
    ///
    /// [`StoreLimitsBuilder`](crate::StoreLimitsBuilder) can be used to create a
    /// [`StoreLimits`](crate::StoreLimits) that implements [`ResourceLimiter`] using
    /// static limit values.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use wasmtime::{Engine, Store, StoreLimitsBuilder};
    /// // Place a limit on linear memories so they cannot grow beyond 1 MiB
    /// let engine = Engine::default();
    /// let store = Store::new_with_limits(&engine, StoreLimitsBuilder::new().memory_pages(16).build());
    /// ```
    pub fn new_with_limits(engine: &Engine, limiter: impl ResourceLimiter + 'static) -> Self {
        Self::new_(engine, Some(Rc::new(ResourceLimiterProxy(limiter))))
    }

    fn new_(engine: &Engine, limiter: Option<Rc<dyn wasmtime_runtime::ResourceLimiter>>) -> Self {
        // Ensure that wasmtime_runtime's signal handlers are configured. This
        // is the per-program initialization required for handling traps, such
        // as configuring signals, vectored exception handlers, etc.
        wasmtime_runtime::init_traps(crate::module::GlobalModuleRegistry::is_wasm_pc);

        Self {
            inner: Rc::new(StoreInner {
                engine: engine.clone(),
                interrupts: Arc::new(Default::default()),
                instances: RefCell::new(Vec::new()),
                signal_handler: RefCell::new(None),
                externref_activations_table: VMExternRefActivationsTable::new(),
                modules: RefCell::new(ModuleRegistry::default()),
                signatures: RefCell::new(SignatureCollection::new(engine.signatures())),
                instance_count: Default::default(),
                memory_count: Default::default(),
                table_count: Default::default(),
                fuel_adj: Cell::new(0),
                #[cfg(feature = "async")]
                current_suspend: Cell::new(ptr::null()),
                #[cfg(feature = "async")]
                current_poll_cx: Cell::new(ptr::null_mut()),
                out_of_gas_behavior: Cell::new(OutOfGas::Trap),
                context_values: RefCell::new(HashMap::new()),
                limiter,
            }),
        }
    }

    /// Gets a host function from the [`Config`](crate::Config) associated with this [`Store`].
    ///
    /// Returns `None` if the given host function is not defined.
    pub fn get_host_func(&self, module: &str, name: &str) -> Option<Func> {
        self.inner
            .engine
            .config()
            .get_host_func(module, name)
            .map(|f| {
                // This call is safe because we know the function is coming from the
                // config associated with this store
                unsafe { f.to_func(self) }
            })
    }

    /// Returns the [`Engine`] that this store is associated with.
    #[inline]
    pub fn engine(&self) -> &Engine {
        &self.inner.engine
    }

    /// Gets a context value from the store.
    ///
    /// Returns a reference to the context value if present.
    pub fn get<T: Any>(&self) -> Option<&T> {
        let values = self.inner.context_values.borrow();

        // Safety: a context value cannot be removed once added and therefore the address is
        // stable for the life of the store
        values
            .get(&TypeId::of::<T>())
            .map(|v| unsafe { &*(v.downcast_ref::<T>().unwrap() as *const T) })
    }

    /// Sets a context value into the store.
    ///
    /// Returns the given value as an error if an existing value is already set.
    pub fn set<T: Any>(&self, value: T) -> Result<(), T> {
        let mut values = self.inner.context_values.borrow_mut();

        match values.entry(value.type_id()) {
            Entry::Occupied(_) => Err(value),
            Entry::Vacant(v) => {
                v.insert(Box::new(value));
                Ok(())
            }
        }
    }

    pub(crate) fn limiter(&self) -> &Option<Rc<dyn wasmtime_runtime::ResourceLimiter>> {
        &self.inner.limiter
    }

    pub(crate) fn signatures(&self) -> &RefCell<SignatureCollection> {
        &self.inner.signatures
    }

    pub(crate) fn lookup_trampoline(&self, anyfunc: &VMCallerCheckedAnyfunc) -> VMTrampoline {
        // Look up the trampoline with the store's trampolines (from `Func`).
        if let Some(trampoline) = self
            .inner
            .signatures
            .borrow()
            .trampoline(anyfunc.type_index)
        {
            return trampoline;
        }

        // Look up the trampoline with the registered modules
        if let Some(trampoline) = self.inner.modules.borrow().lookup_trampoline(anyfunc) {
            return trampoline;
        }

        // Lastly, check with the engine (for `HostFunc`)
        self.inner
            .engine
            .host_func_signatures()
            .trampoline(anyfunc.type_index)
            .expect("trampoline missing")
    }

    pub(crate) fn bump_resource_counts(&self, module: &Module) -> Result<()> {
        fn bump(slot: &Cell<usize>, max: usize, amt: usize, desc: &str) -> Result<()> {
            let new = slot.get().saturating_add(amt);
            if new > max {
                bail!(
                    "resource limit exceeded: {} count too high at {}",
                    desc,
                    new
                );
            }
            slot.set(new);
            Ok(())
        }

        let module = module.env_module();
        let memories = module.memory_plans.len() - module.num_imported_memories;
        let tables = module.table_plans.len() - module.num_imported_tables;
        let (max_instances, max_memories, max_tables) = self.limits();

        bump(&self.inner.instance_count, max_instances, 1, "instance")?;
        bump(&self.inner.memory_count, max_memories, memories, "memory")?;
        bump(&self.inner.table_count, max_tables, tables, "table")?;

        Ok(())
    }

    pub(crate) unsafe fn add_instance(
        &self,
        handle: InstanceHandle,
        ondemand: bool,
    ) -> StoreInstanceHandle {
        self.inner.instances.borrow_mut().push(StoreInstance {
            handle: handle.clone(),
            ondemand,
        });
        StoreInstanceHandle {
            store: self.clone(),
            handle,
        }
    }

    pub(crate) fn existing_instance_handle(&self, handle: InstanceHandle) -> StoreInstanceHandle {
        debug_assert!(
            self.inner
                .instances
                .borrow()
                .iter()
                .any(|i| i.handle.vmctx_ptr() == handle.vmctx_ptr())
                || self.inner.engine.host_func_anyfunc(&handle).is_some()
        );
        StoreInstanceHandle {
            store: self.clone(),
            handle,
        }
    }

    pub(crate) unsafe fn existing_vmctx(&self, cx: *mut VMContext) -> StoreInstanceHandle {
        self.existing_instance_handle(InstanceHandle::from_vmctx(cx))
    }

    #[cfg_attr(not(target_os = "linux"), allow(dead_code))] // not used on all platforms
    pub(crate) fn set_signal_handler(&self, handler: Option<Box<SignalHandler<'static>>>) {
        *self.inner.signal_handler.borrow_mut() = handler;
    }

    #[inline]
    pub(crate) fn interrupts(&self) -> &VMInterrupts {
        &self.inner.interrupts
    }

    /// Returns whether the stores `a` and `b` refer to the same underlying
    /// `Store`.
    ///
    /// Because the `Store` type is reference counted multiple clones may point
    /// to the same underlying storage, and this method can be used to determine
    /// whether two stores are indeed the same.
    pub fn same(a: &Store, b: &Store) -> bool {
        Rc::ptr_eq(&a.inner, &b.inner)
    }

    /// Creates an [`InterruptHandle`] which can be used to interrupt the
    /// execution of instances within this `Store`.
    ///
    /// An [`InterruptHandle`] handle is a mechanism of ensuring that guest code
    /// doesn't execute for too long. For example it's used to prevent wasm
    /// programs for executing infinitely in infinite loops or recursive call
    /// chains.
    ///
    /// The [`InterruptHandle`] type is sendable to other threads so you can
    /// interact with it even while the thread with this `Store` is executing
    /// wasm code.
    ///
    /// There's one method on an interrupt handle:
    /// [`InterruptHandle::interrupt`]. This method is used to generate an
    /// interrupt and cause wasm code to exit "soon".
    ///
    /// ## When are interrupts delivered?
    ///
    /// The term "interrupt" here refers to one of two different behaviors that
    /// are interrupted in wasm:
    ///
    /// * The head of every loop in wasm has a check to see if it's interrupted.
    /// * The prologue of every function has a check to see if it's interrupted.
    ///
    /// This interrupt mechanism makes no attempt to signal interrupts to
    /// native code. For example if a host function is blocked, then sending
    /// an interrupt will not interrupt that operation.
    ///
    /// Interrupts are consumed as soon as possible when wasm itself starts
    /// executing. This means that if you interrupt wasm code then it basically
    /// guarantees that the next time wasm is executing on the target thread it
    /// will return quickly (either normally if it were already in the process
    /// of returning or with a trap from the interrupt). Once an interrupt
    /// trap is generated then an interrupt is consumed, and further execution
    /// will not be interrupted (unless another interrupt is set).
    ///
    /// When implementing interrupts you'll want to ensure that the delivery of
    /// interrupts into wasm code is also handled in your host imports and
    /// functionality. Host functions need to either execute for bounded amounts
    /// of time or you'll need to arrange for them to be interrupted as well.
    ///
    /// ## Return Value
    ///
    /// This function returns a `Result` since interrupts are not always
    /// enabled. Interrupts are enabled via the
    /// [`Config::interruptable`](crate::Config::interruptable) method, and if
    /// this store's [`Config`](crate::Config) hasn't been configured to enable
    /// interrupts then an error is returned.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # use wasmtime::*;
    /// # fn main() -> Result<()> {
    /// // Enable interruptable code via `Config` and then create an interrupt
    /// // handle which we'll use later to interrupt running code.
    /// let engine = Engine::new(Config::new().interruptable(true))?;
    /// let store = Store::new(&engine);
    /// let interrupt_handle = store.interrupt_handle()?;
    ///
    /// // Compile and instantiate a small example with an infinite loop.
    /// let module = Module::new(&engine, r#"
    ///     (func (export "run") (loop br 0))
    /// "#)?;
    /// let instance = Instance::new(&store, &module, &[])?;
    /// let run = instance.get_typed_func::<(), ()>("run")?;
    ///
    /// // Spin up a thread to send us an interrupt in a second
    /// std::thread::spawn(move || {
    ///     std::thread::sleep(std::time::Duration::from_secs(1));
    ///     interrupt_handle.interrupt();
    /// });
    ///
    /// let trap = run.call(()).unwrap_err();
    /// assert!(trap.to_string().contains("wasm trap: interrupt"));
    /// # Ok(())
    /// # }
    /// ```
    pub fn interrupt_handle(&self) -> Result<InterruptHandle> {
        if self.engine().config().tunables.interruptable {
            Ok(InterruptHandle {
                interrupts: self.inner.interrupts.clone(),
            })
        } else {
            bail!("interrupts aren't enabled for this `Store`")
        }
    }

    #[inline]
    pub(crate) fn externref_activations_table(&self) -> &VMExternRefActivationsTable {
        &self.inner.externref_activations_table
    }

    #[inline]
    pub(crate) fn modules(&self) -> &RefCell<ModuleRegistry> {
        &self.inner.modules
    }

    #[inline]
    pub(crate) fn module_info_lookup(&self) -> &dyn wasmtime_runtime::ModuleInfoLookup {
        self.inner.as_ref()
    }

    /// Perform garbage collection of `ExternRef`s.
    pub fn gc(&self) {
        // For this crate's API, we ensure that `set_stack_canary` invariants
        // are upheld for all host-->Wasm calls.
        unsafe {
            wasmtime_runtime::gc(self.inner.as_ref(), &self.inner.externref_activations_table);
        }
    }

    /// Returns the amount of fuel consumed by this store's execution so far.
    ///
    /// If fuel consumption is not enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) then this
    /// function will return `None`. Also note that fuel, if enabled, must be
    /// originally configured via [`Store::add_fuel`].
    pub fn fuel_consumed(&self) -> Option<u64> {
        if !self.engine().config().tunables.consume_fuel {
            return None;
        }
        let consumed = unsafe { *self.inner.interrupts.fuel_consumed.get() };
        Some(u64::try_from(self.inner.fuel_adj.get() + consumed).unwrap())
    }

    /// Adds fuel to this [`Store`] for wasm to consume while executing.
    ///
    /// For this method to work fuel consumption must be enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel). By default a
    /// [`Store`] starts with 0 fuel for wasm to execute with (meaning it will
    /// immediately trap). This function must be called for the store to have
    /// some fuel to allow WebAssembly to execute.
    ///
    /// Most WebAssembly instructions consume 1 unit of fuel. Some
    /// instructions, such as `nop`, `drop`, `block`, and `loop`, consume 0
    /// units, as any execution cost associated with them involves other
    /// instructions which do consume fuel.
    ///
    /// Note that at this time when fuel is entirely consumed it will cause
    /// wasm to trap. More usages of fuel are planned for the future.
    ///
    /// # Panics
    ///
    /// This function will panic if the store's [`Config`](crate::Config) did
    /// not have fuel consumption enabled.
    pub fn add_fuel(&self, fuel: u64) -> Result<()> {
        anyhow::ensure!(
            self.engine().config().tunables.consume_fuel,
            "fuel is not configured in this store"
        );

        // Fuel is stored as an i64, so we need to cast it. If the provided fuel
        // value overflows that just assume that i64::max will suffice. Wasm
        // execution isn't fast enough to burn through i64::max fuel in any
        // reasonable amount of time anyway.
        let fuel = i64::try_from(fuel).unwrap_or(i64::max_value());
        let adj = self.inner.fuel_adj.get();
        let consumed_ptr = unsafe { &mut *self.inner.interrupts.fuel_consumed.get() };

        match (consumed_ptr.checked_sub(fuel), adj.checked_add(fuel)) {
            // If we succesfully did arithmetic without overflowing then we can
            // just update our fields.
            (Some(consumed), Some(adj)) => {
                self.inner.fuel_adj.set(adj);
                *consumed_ptr = consumed;
            }

            // Otherwise something overflowed. Make sure that we preserve the
            // amount of fuel that's already consumed, but otherwise assume that
            // we were given infinite fuel.
            _ => {
                self.inner.fuel_adj.set(i64::max_value());
                *consumed_ptr = (*consumed_ptr + adj) - i64::max_value();
            }
        }

        Ok(())
    }

    /// Configures a [`Store`] to generate a [`Trap`] whenever it runs out of
    /// fuel.
    ///
    /// When a [`Store`] is configured to consume fuel with
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
    /// configure what happens when fuel runs out. Specifically a WebAssembly
    /// trap will be raised and the current execution of WebAssembly will be
    /// aborted.
    ///
    /// This is the default behavior for running out of fuel.
    pub fn out_of_fuel_trap(&self) {
        self.inner.out_of_gas_behavior.set(OutOfGas::Trap);
    }

    /// Configures a [`Store`] to yield execution of async WebAssembly code
    /// periodically.
    ///
    /// When a [`Store`] is configured to consume fuel with
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
    /// configure what happens when fuel runs out. Specifically executing
    /// WebAssembly will be suspended and control will be yielded back to the
    /// caller. This is only suitable with use of a store associated with an [async
    /// config](crate::Config::async_support) because only then are futures used and yields
    /// are possible.
    ///
    /// The purpose of this behavior is to ensure that futures which represent
    /// execution of WebAssembly do not execute too long inside their
    /// `Future::poll` method. This allows for some form of cooperative
    /// multitasking where WebAssembly will voluntarily yield control
    /// periodically (based on fuel consumption) back to the running thread.
    ///
    /// Note that futures returned by this crate will automatically flag
    /// themselves to get re-polled if a yield happens. This means that
    /// WebAssembly will continue to execute, just after giving the host an
    /// opportunity to do something else.
    ///
    /// The `fuel_to_inject` parameter indicates how much fuel should be
    /// automatically re-injected after fuel runs out. This is how much fuel
    /// will be consumed between yields of an async future.
    ///
    /// The `injection_count` parameter indicates how many times this fuel will
    /// be injected. Multiplying the two parameters is the total amount of fuel
    /// this store is allowed before wasm traps.
    ///
    /// # Panics
    ///
    /// This method will panic if it is not called on a store associated with an [async
    /// config](crate::Config::async_support).
    pub fn out_of_fuel_async_yield(&self, injection_count: u32, fuel_to_inject: u64) {
        assert!(
            self.async_support(),
            "cannot use `out_of_fuel_async_yield` without enabling async support in the config"
        );
        self.inner.out_of_gas_behavior.set(OutOfGas::InjectFuel {
            injection_count,
            fuel_to_inject,
        });
    }

    #[inline]
    pub(crate) fn async_support(&self) -> bool {
        self.inner.engine.config().async_support
    }

    /// Blocks on the asynchronous computation represented by `future` and
    /// produces the result here, in-line.
    ///
    /// This function is designed to only work when it's currently executing on
    /// a native fiber. This fiber provides the ability for us to handle the
    /// future's `Pending` state as "jump back to whomever called the fiber in
    /// an asynchronous fashion and propagate `Pending`". This tight coupling
    /// with `on_fiber` below is what powers the asynchronicity of calling wasm.
    /// Note that the asynchronous part only applies to host functions, wasm
    /// itself never really does anything asynchronous at this time.
    ///
    /// This function takes a `future` and will (appear to) synchronously wait
    /// on the result. While this function is executing it will fiber switch
    /// to-and-from the original frame calling `on_fiber` which should be a
    /// guarantee due to how async stores are configured.
    ///
    /// The return value here is either the output of the future `T`, or a trap
    /// which represents that the asynchronous computation was cancelled. It is
    /// not recommended to catch the trap and try to keep executing wasm, so
    /// we've tried to liberally document this.
    #[cfg(feature = "async")]
    pub(crate) fn block_on<T>(
        &self,
        mut future: Pin<&mut dyn Future<Output = T>>,
    ) -> Result<T, Trap> {
        debug_assert!(self.async_support());

        // Take our current `Suspend` context which was configured as soon as
        // our fiber started. Note that we must load it at the front here and
        // save it on our stack frame. While we're polling the future other
        // fibers may be started for recursive computations, and the current
        // suspend context is only preserved at the edges of the fiber, not
        // during the fiber itself.
        //
        // For a little bit of extra safety we also replace the current value
        // with null to try to catch any accidental bugs on our part early.
        // This is all pretty unsafe so we're trying to be careful...
        //
        // Note that there should be a segfaulting test  in `async_functions.rs`
        // if this `Reset` is removed.
        let suspend = self.inner.current_suspend.replace(ptr::null());
        let _reset = Reset(&self.inner.current_suspend, suspend);
        assert!(!suspend.is_null());

        loop {
            let future_result = unsafe {
                let current_poll_cx = self.inner.current_poll_cx.replace(ptr::null_mut());
                let _reset = Reset(&self.inner.current_poll_cx, current_poll_cx);
                assert!(!current_poll_cx.is_null());
                future.as_mut().poll(&mut *current_poll_cx)
            };
            match future_result {
                Poll::Ready(t) => break Ok(t),
                Poll::Pending => {}
            }

            unsafe {
                let before = wasmtime_runtime::TlsRestore::take()
                    .map_err(|e| Trap::from_runtime(self, e))?;
                let res = (*suspend).suspend(());
                before.replace().map_err(|e| Trap::from_runtime(self, e))?;
                res?;
            }
        }
    }

    /// Executes a synchronous computation `func` asynchronously on a new fiber.
    ///
    /// This function will convert the synchronous `func` into an asynchronous
    /// future. This is done by running `func` in a fiber on a separate native
    /// stack which can be suspended and resumed from.
    ///
    /// Most of the nitty-gritty here is how we juggle the various contexts
    /// necessary to suspend the fiber later on and poll sub-futures. It's hoped
    /// that the various comments are illuminating as to what's going on here.
    #[cfg(feature = "async")]
    pub(crate) async fn on_fiber<R>(&self, func: impl FnOnce() -> R) -> Result<R, Trap> {
        let config = self.inner.engine.config();

        debug_assert!(self.async_support());
        debug_assert!(config.async_stack_size > 0);

        let stack = self
            .inner
            .engine
            .allocator()
            .allocate_fiber_stack()
            .map_err(|e| Trap::from(anyhow::Error::from(e)))?;

        let mut slot = None;
        let fiber = wasmtime_fiber::Fiber::new(stack, |keep_going, suspend| {
            // First check and see if we were interrupted/dropped, and only
            // continue if we haven't been.
            keep_going?;

            // Configure our store's suspension context for the rest of the
            // execution of this fiber. Note that a raw pointer is stored here
            // which is only valid for the duration of this closure.
            // Consequently we at least replace it with the previous value when
            // we're done. This reset is also required for correctness because
            // otherwise our value will overwrite another active fiber's value.
            // There should be a test that segfaults in `async_functions.rs` if
            // this `Replace` is removed.
            let prev = self.inner.current_suspend.replace(suspend);
            let _reset = Reset(&self.inner.current_suspend, prev);

            slot = Some(func());
            Ok(())
        })
        .map_err(|e| Trap::from(anyhow::Error::from(e)))?;

        // Once we have the fiber representing our synchronous computation, we
        // wrap that in a custom future implementation which does the
        // translation from the future protocol to our fiber API.
        FiberFuture { fiber, store: self }.await?;

        return Ok(slot.unwrap());

        struct FiberFuture<'a> {
            fiber: wasmtime_fiber::Fiber<'a, Result<(), Trap>, (), Result<(), Trap>>,
            store: &'a Store,
        }

        impl Future for FiberFuture<'_> {
            type Output = Result<(), Trap>;

            fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                // We need to carry over this `cx` into our fiber's runtime
                // for when it tries to poll sub-futures that are created. Doing
                // this must be done unsafely, however, since `cx` is only alive
                // for this one singular function call. Here we do a `transmute`
                // to extend the lifetime of `Context` so it can be stored in
                // our `Store`, and then we replace the current polling context
                // with this one.
                //
                // Note that the replace is done for weird situations where
                // futures might be switching contexts and there's multiple
                // wasmtime futures in a chain of futures.
                //
                // On exit from this function, though, we reset the polling
                // context back to what it was to signify that `Store` no longer
                // has access to this pointer.
                let cx =
                    unsafe { std::mem::transmute::<&mut Context<'_>, *mut Context<'static>>(cx) };
                let prev = self.store.inner.current_poll_cx.replace(cx);
                let _reset = Reset(&self.store.inner.current_poll_cx, prev);

                // After that's set up we resume execution of the fiber, which
                // may also start the fiber for the first time. This either
                // returns `Ok` saying the fiber finished (yay!) or it returns
                // `Err` with the payload passed to `suspend`, which in our case
                // is `()`. If `Err` is returned that means the fiber polled a
                // future but it said "Pending", so we propagate that here.
                match self.fiber.resume(Ok(())) {
                    Ok(result) => Poll::Ready(result),
                    Err(()) => Poll::Pending,
                }
            }
        }

        // Dropping futures is pretty special in that it means the future has
        // been requested to be cancelled. Here we run the risk of dropping an
        // in-progress fiber, and if we were to do nothing then the fiber would
        // leak all its owned stack resources.
        //
        // To handle this we implement `Drop` here and, if the fiber isn't done,
        // resume execution of the fiber saying "hey please stop you're
        // interrupted". Our `Trap` created here (which has the stack trace
        // of whomever dropped us) will then get propagated in whatever called
        // `block_on`, and the idea is that the trap propagates all the way back
        // up to the original fiber start, finishing execution.
        //
        // We don't actually care about the fiber's return value here (no one's
        // around to look at it), we just assert the fiber finished to
        // completion.
        impl Drop for FiberFuture<'_> {
            fn drop(&mut self) {
                if !self.fiber.done() {
                    let result = self.fiber.resume(Err(Trap::new("future dropped")));
                    // This resumption with an error should always complete the
                    // fiber. While it's technically possible for host code to catch
                    // the trap and re-resume, we'd ideally like to signal that to
                    // callers that they shouldn't be doing that.
                    debug_assert!(result.is_ok());
                }

                unsafe {
                    self.store
                        .engine()
                        .allocator()
                        .deallocate_fiber_stack(self.fiber.stack());
                }
            }
        }
    }

    /// Immediately raise a trap on an out-of-gas condition.
    fn out_of_gas_trap(&self) -> ! {
        #[derive(Debug)]
        struct OutOfGasError;

        impl fmt::Display for OutOfGasError {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("all fuel consumed by WebAssembly")
            }
        }

        impl std::error::Error for OutOfGasError {}
        unsafe {
            wasmtime_runtime::raise_lib_trap(wasmtime_runtime::Trap::User(Box::new(OutOfGasError)))
        }
    }

    /// Yields execution to the caller on out-of-gas
    ///
    /// This only works on async futures and stores, and assumes that we're
    /// executing on a fiber. This will yield execution back to the caller once
    /// and when we come back we'll continue with `fuel_to_inject` more fuel.
    #[cfg(feature = "async")]
    fn out_of_gas_yield(&self, fuel_to_inject: u64) {
        // Small future that yields once and then returns ()
        #[derive(Default)]
        struct Yield {
            yielded: bool,
        }

        impl Future for Yield {
            type Output = ();

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
                if self.yielded {
                    Poll::Ready(())
                } else {
                    // Flag ourselves as yielded to return next time, and also
                    // flag the waker that we're already ready to get
                    // re-enqueued for another poll.
                    self.yielded = true;
                    cx.waker().wake_by_ref();
                    Poll::Pending
                }
            }
        }

        let mut future = Yield::default();
        match self.block_on(unsafe { Pin::new_unchecked(&mut future) }) {
            // If this finished successfully then we were resumed normally via a
            // `poll`, so inject some more fuel and keep going.
            Ok(()) => self.add_fuel(fuel_to_inject).unwrap(),
            // If the future was dropped while we were yielded, then we need to
            // clean up this fiber. Do so by raising a trap which will abort all
            // wasm and get caught on the other side to clean things up.
            Err(trap) => unsafe { wasmtime_runtime::raise_user_trap(trap.into()) },
        }
    }

    fn limits(&self) -> (usize, usize, usize) {
        self.inner
            .limiter
            .as_ref()
            .map(|l| (l.instances(), l.memories(), l.tables()))
            .unwrap_or((
                DEFAULT_INSTANCE_LIMIT,
                DEFAULT_MEMORY_LIMIT,
                DEFAULT_TABLE_LIMIT,
            ))
    }
}

unsafe impl TrapInfo for Store {
    #[inline]
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn custom_signal_handler(&self, call: &dyn Fn(&SignalHandler) -> bool) -> bool {
        if let Some(handler) = &*self.inner.signal_handler.borrow() {
            return call(handler);
        }
        false
    }

    fn out_of_gas(&self) {
        match self.inner.out_of_gas_behavior.get() {
            OutOfGas::Trap => self.out_of_gas_trap(),
            #[cfg(feature = "async")]
            OutOfGas::InjectFuel {
                injection_count,
                fuel_to_inject,
            } => {
                if injection_count == 0 {
                    self.out_of_gas_trap();
                }
                self.inner.out_of_gas_behavior.set(OutOfGas::InjectFuel {
                    injection_count: injection_count - 1,
                    fuel_to_inject,
                });
                self.out_of_gas_yield(fuel_to_inject);
            }
            #[cfg(not(feature = "async"))]
            OutOfGas::InjectFuel { .. } => unreachable!(),
        }
    }

    #[inline]
    fn interrupts(&self) -> &VMInterrupts {
        &self.inner.interrupts
    }
}

impl Default for Store {
    fn default() -> Store {
        Store::new(&Engine::default())
    }
}

impl fmt::Debug for Store {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let inner = &*self.inner as *const StoreInner;
        f.debug_struct("Store").field("inner", &inner).finish()
    }
}

impl Drop for StoreInner {
    fn drop(&mut self) {
        let allocator = self.engine.allocator();
        let ondemand = OnDemandInstanceAllocator::default();
        for instance in self.instances.borrow().iter() {
            unsafe {
                if instance.ondemand {
                    ondemand.deallocate(&instance.handle);
                } else {
                    allocator.deallocate(&instance.handle);
                }
            }
        }
    }
}

impl wasmtime_runtime::ModuleInfoLookup for StoreInner {
    fn lookup(&self, pc: usize) -> Option<Arc<dyn ModuleInfo>> {
        self.modules.borrow().lookup_module(pc)
    }
}

/// A threadsafe handle used to interrupt instances executing within a
/// particular `Store`.
///
/// This structure is created by the [`Store::interrupt_handle`] method.
#[derive(Debug)]
pub struct InterruptHandle {
    interrupts: Arc<VMInterrupts>,
}

// The `VMInterrupts` type is a pod-type with no destructor, and we only access
// `interrupts` from other threads, so add in these trait impls which are
// otherwise not available due to the `fuel_consumed` variable in
// `VMInterrupts`.
unsafe impl Send for InterruptHandle {}
unsafe impl Sync for InterruptHandle {}

impl InterruptHandle {
    /// Flags that execution within this handle's original [`Store`] should be
    /// interrupted.
    ///
    /// This will not immediately interrupt execution of wasm modules, but
    /// rather it will interrupt wasm execution of loop headers and wasm
    /// execution of function entries. For more information see
    /// [`Store::interrupt_handle`].
    pub fn interrupt(&self) {
        self.interrupts.interrupt()
    }
}

struct Reset<'a, T: Copy>(&'a Cell<T>, T);

impl<T: Copy> Drop for Reset<'_, T> {
    fn drop(&mut self) {
        self.0.set(self.1);
    }
}