1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
use crate::frame_info::{GlobalFrameInfoRegistration, FRAME_INFO};
use crate::runtime::Store;
use crate::types::{
    ExportType, ExternType, FuncType, GlobalType, ImportType, Limits, MemoryType, Mutability,
    TableType, ValType,
};
use anyhow::{bail, Error, Result};
use std::path::Path;
use std::sync::{Arc, Mutex};
use wasmparser::{
    validate, CustomSectionKind, ExternalKind, ImportSectionEntryType, ModuleReader, Name,
    SectionCode,
};
use wasmtime_jit::CompiledModule;

fn into_memory_type(mt: wasmparser::MemoryType) -> Result<MemoryType> {
    if mt.shared {
        bail!("shared memories are not supported yet");
    }
    Ok(MemoryType::new(Limits::new(
        mt.limits.initial,
        mt.limits.maximum,
    )))
}

fn into_global_type(gt: wasmparser::GlobalType) -> GlobalType {
    let mutability = if gt.mutable {
        Mutability::Var
    } else {
        Mutability::Const
    };
    GlobalType::new(into_valtype(&gt.content_type), mutability)
}

// `into_valtype` is used for `map` which requires `&T`.
#[allow(clippy::trivially_copy_pass_by_ref)]
fn into_valtype(ty: &wasmparser::Type) -> ValType {
    use wasmparser::Type::*;
    match ty {
        I32 => ValType::I32,
        I64 => ValType::I64,
        F32 => ValType::F32,
        F64 => ValType::F64,
        V128 => ValType::V128,
        AnyFunc => ValType::FuncRef,
        AnyRef => ValType::AnyRef,
        _ => unimplemented!("types in into_valtype"),
    }
}

fn into_func_type(mt: wasmparser::FuncType) -> FuncType {
    assert_eq!(mt.form, wasmparser::Type::Func);
    let params = mt.params.iter().map(into_valtype).collect::<Vec<_>>();
    let returns = mt.returns.iter().map(into_valtype).collect::<Vec<_>>();
    FuncType::new(params.into_boxed_slice(), returns.into_boxed_slice())
}

fn into_table_type(tt: wasmparser::TableType) -> TableType {
    assert!(
        tt.element_type == wasmparser::Type::AnyFunc || tt.element_type == wasmparser::Type::AnyRef
    );
    let ty = into_valtype(&tt.element_type);
    let limits = Limits::new(tt.limits.initial, tt.limits.maximum);
    TableType::new(ty, limits)
}

/// A compiled WebAssembly module, ready to be instantiated.
///
/// A `Module` is a compiled in-memory representation of an input WebAssembly
/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
/// through an instantiation process. You cannot call functions or fetch
/// globals, for example, on a `Module` because it's purely a code
/// representation. Instead you'll need to create an
/// [`Instance`](crate::Instance) to interact with the wasm module.
///
/// ## Modules and `Clone`
///
/// Using `clone` on a `Module` is a cheap operation. It will not create an
/// entirely new module, but rather just a new reference to the existing module.
/// In other words it's a shallow copy, not a deep copy.
#[derive(Clone)]
pub struct Module {
    inner: Arc<ModuleInner>,
}

struct ModuleInner {
    store: Store,
    imports: Box<[ImportType]>,
    exports: Box<[ExportType]>,
    compiled: CompiledModule,
    frame_info_registration: Mutex<Option<Option<GlobalFrameInfoRegistration>>>,
    names: Arc<Names>,
}

pub struct Names {
    pub module: Arc<wasmtime_environ::Module>,
    pub module_name: Option<String>,
}

impl Module {
    /// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
    ///
    /// The `bytes` provided must be in one of two formats:
    ///
    /// * It can be a [binary-encoded][binary] WebAssembly module. This
    ///   is always supported.
    /// * It may also be a [text-encoded][text] instance of the WebAssembly
    ///   text format. This is only supported when the `wat` feature of this
    ///   crate is enabled. If this is supplied then the text format will be
    ///   parsed before validation. Note that the `wat` feature is enabled by
    ///   default.
    ///
    /// The data for the wasm module must be loaded in-memory if it's present
    /// elsewhere, for example on disk. This requires that the entire binary is
    /// loaded into memory all at once, this API does not support streaming
    /// compilation of a module.
    ///
    /// The WebAssembly binary will be decoded and validated. It will also be
    /// compiled according to the configuration of the provided `store` and
    /// cached in this type.
    ///
    /// The provided `store` is a global cache for compiled resources as well as
    /// configuration for what wasm features are enabled. It's recommended to
    /// share a `store` among modules if possible.
    ///
    /// # Errors
    ///
    /// This function may fail and return an error. Errors may include
    /// situations such as:
    ///
    /// * The binary provided could not be decoded because it's not a valid
    ///   WebAssembly binary
    /// * The WebAssembly binary may not validate (e.g. contains type errors)
    /// * Implementation-specific limits were exceeded with a valid binary (for
    ///   example too many locals)
    /// * The wasm binary may use features that are not enabled in the
    ///   configuration of `store`
    /// * If the `wat` feature is enabled and the input is text, then it may be
    ///   rejected if it fails to parse.
    ///
    /// The error returned should contain full information about why module
    /// creation failed if one is returned.
    ///
    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
    /// [text]: https://webassembly.github.io/spec/core/text/index.html
    pub fn new(store: &Store, bytes: impl AsRef<[u8]>) -> Result<Module> {
        #[cfg(feature = "wat")]
        let bytes = wat::parse_bytes(bytes.as_ref())?;
        Module::from_binary(store, bytes.as_ref())
    }

    /// Creates a new WebAssembly `Module` from the given in-memory `binary`
    /// data. The provided `name` will be used in traps/backtrace details.
    ///
    /// See [`Module::new`] for other details.
    pub fn new_with_name(store: &Store, bytes: impl AsRef<[u8]>, name: &str) -> Result<Module> {
        let mut module = Module::new(store, bytes.as_ref())?;
        let inner = Arc::get_mut(&mut module.inner).unwrap();
        Arc::get_mut(&mut inner.names).unwrap().module_name = Some(name.to_string());
        Ok(module)
    }

    /// Creates a new WebAssembly `Module` from the contents of the given
    /// `file` on disk.
    ///
    /// This is a convenience function that will read the `file` provided and
    /// pass the bytes to the [`Module::new`] function. For more information
    /// see [`Module::new`]
    pub fn from_file(store: &Store, file: impl AsRef<Path>) -> Result<Module> {
        #[cfg(feature = "wat")]
        let wasm = wat::parse_file(file)?;
        #[cfg(not(feature = "wat"))]
        let wasm = std::fs::read(file)?;
        Module::new(store, &wasm)
    }

    /// Creates a new WebAssembly `Module` from the given in-memory `binary`
    /// data.
    ///
    /// This is similar to [`Module::new`] except that it requires that the
    /// `binary` input is a WebAssembly binary, the text format is not supported
    /// by this function. It's generally recommended to use [`Module::new`],
    /// but if it's required to not support the text format this function can be
    /// used instead.
    pub fn from_binary(store: &Store, binary: &[u8]) -> Result<Module> {
        Module::validate(store, binary)?;
        // Note that the call to `from_binary_unchecked` here should be ok
        // because we previously validated the binary, meaning we're guaranteed
        // to pass a valid binary for `store`.
        unsafe { Module::from_binary_unchecked(store, binary) }
    }

    /// Creates a new WebAssembly `Module` from the given in-memory `binary`
    /// data, skipping validation and asserting that `binary` is a valid
    /// WebAssembly module.
    ///
    /// This function is the same as [`Module::new`] except that it skips the
    /// call to [`Module::validate`] and it does not support the text format of
    /// WebAssembly. The WebAssembly binary is not validated for
    /// correctness and it is simply assumed as valid.
    ///
    /// For more information about creation of a module and the `store` argument
    /// see the documentation of [`Module::new`].
    ///
    /// # Unsafety
    ///
    /// This function is `unsafe` due to the unchecked assumption that the input
    /// `binary` is valid. If the `binary` is not actually a valid wasm binary it
    /// may cause invalid machine code to get generated, cause panics, etc.
    ///
    /// It is only safe to call this method if [`Module::validate`] succeeds on
    /// the same arguments passed to this function.
    ///
    /// # Errors
    ///
    /// This function may fail for many of the same reasons as [`Module::new`].
    /// While this assumes that the binary is valid it still needs to actually
    /// be somewhat valid for decoding purposes, and the basics of decoding can
    /// still fail.
    pub unsafe fn from_binary_unchecked(store: &Store, binary: &[u8]) -> Result<Module> {
        let mut ret = Module::compile(store, binary)?;
        ret.read_imports_and_exports(binary)?;
        Ok(ret)
    }

    /// Validates `binary` input data as a WebAssembly binary given the
    /// configuration in `store`.
    ///
    /// This function will perform a speedy validation of the `binary` input
    /// WebAssembly module (which is in [binary form][binary], the text format
    /// is not accepted by this function) and return either `Ok` or `Err`
    /// depending on the results of validation. The `store` argument indicates
    /// configuration for WebAssembly features, for example, which are used to
    /// indicate what should be valid and what shouldn't be.
    ///
    /// Validation automatically happens as part of [`Module::new`], but is a
    /// requirement for [`Module::new_unchecked`] to be safe.
    ///
    /// # Errors
    ///
    /// If validation fails for any reason (type check error, usage of a feature
    /// that wasn't enabled, etc) then an error with a description of the
    /// validation issue will be returned.
    ///
    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
    pub fn validate(store: &Store, binary: &[u8]) -> Result<()> {
        let config = store.engine().config().validating_config.clone();
        validate(binary, Some(config)).map_err(Error::new)
    }

    unsafe fn compile(store: &Store, binary: &[u8]) -> Result<Self> {
        let compiled = CompiledModule::new(
            &mut store.compiler_mut(),
            binary,
            store.engine().config().debug_info,
            store.engine().config().profiler.as_ref(),
        )?;

        let names = Arc::new(Names {
            module_name: None,
            module: compiled.module().clone(),
        });
        Ok(Module {
            inner: Arc::new(ModuleInner {
                store: store.clone(),
                imports: Box::new([]),
                exports: Box::new([]),
                names,
                compiled,
                frame_info_registration: Mutex::new(None),
            }),
        })
    }

    pub(crate) fn compiled_module(&self) -> &CompiledModule {
        &self.inner.compiled
    }

    /// Returns identifier/name that this [`Module`] has. This name
    /// is used in traps/backtrace details.
    pub fn name(&self) -> Option<&str> {
        self.inner.names.module_name.as_deref()
    }

    /// Returns the list of imports that this [`Module`] has and must be
    /// satisfied.
    pub fn imports(&self) -> &[ImportType] {
        &self.inner.imports
    }

    /// Returns the list of exports that this [`Module`] has and will be
    /// available after instantiation.
    pub fn exports(&self) -> &[ExportType] {
        &self.inner.exports
    }

    /// Returns the [`Store`] that this [`Module`] was compiled into.
    pub fn store(&self) -> &Store {
        &self.inner.store
    }

    fn read_imports_and_exports(&mut self, binary: &[u8]) -> Result<()> {
        let inner = Arc::get_mut(&mut self.inner).unwrap();
        let mut reader = ModuleReader::new(binary)?;
        let mut imports = Vec::new();
        let mut exports = Vec::new();
        let mut memories = Vec::new();
        let mut tables = Vec::new();
        let mut func_sig = Vec::new();
        let mut sigs = Vec::new();
        let mut globals = Vec::new();
        while !reader.eof() {
            let section = reader.read()?;
            match section.code {
                SectionCode::Memory => {
                    let section = section.get_memory_section_reader()?;
                    memories.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        memories.push(into_memory_type(entry?)?);
                    }
                }
                SectionCode::Type => {
                    let section = section.get_type_section_reader()?;
                    sigs.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        sigs.push(into_func_type(entry?));
                    }
                }
                SectionCode::Function => {
                    let section = section.get_function_section_reader()?;
                    func_sig.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        func_sig.push(entry?);
                    }
                }
                SectionCode::Global => {
                    let section = section.get_global_section_reader()?;
                    globals.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        globals.push(into_global_type(entry?.ty));
                    }
                }
                SectionCode::Table => {
                    let section = section.get_table_section_reader()?;
                    tables.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        tables.push(into_table_type(entry?))
                    }
                }
                SectionCode::Import => {
                    let section = section.get_import_section_reader()?;
                    imports.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        let entry = entry?;
                        let r#type = match entry.ty {
                            ImportSectionEntryType::Function(index) => {
                                func_sig.push(index);
                                let sig = &sigs[index as usize];
                                ExternType::Func(sig.clone())
                            }
                            ImportSectionEntryType::Table(tt) => {
                                let table = into_table_type(tt);
                                tables.push(table.clone());
                                ExternType::Table(table)
                            }
                            ImportSectionEntryType::Memory(mt) => {
                                let memory = into_memory_type(mt)?;
                                memories.push(memory.clone());
                                ExternType::Memory(memory)
                            }
                            ImportSectionEntryType::Global(gt) => {
                                let global = into_global_type(gt);
                                globals.push(global.clone());
                                ExternType::Global(global)
                            }
                        };
                        imports.push(ImportType::new(entry.module, entry.field, r#type));
                    }
                }
                SectionCode::Export => {
                    let section = section.get_export_section_reader()?;
                    exports.reserve_exact(section.get_count() as usize);
                    for entry in section {
                        let entry = entry?;
                        let r#type = match entry.kind {
                            ExternalKind::Function => {
                                let sig_index = func_sig[entry.index as usize] as usize;
                                let sig = &sigs[sig_index];
                                ExternType::Func(sig.clone())
                            }
                            ExternalKind::Table => {
                                ExternType::Table(tables[entry.index as usize].clone())
                            }
                            ExternalKind::Memory => {
                                ExternType::Memory(memories[entry.index as usize].clone())
                            }
                            ExternalKind::Global => {
                                ExternType::Global(globals[entry.index as usize].clone())
                            }
                        };
                        exports.push(ExportType::new(entry.field, r#type));
                    }
                }
                SectionCode::Custom {
                    kind: CustomSectionKind::Name,
                    ..
                } => {
                    // Read name section. Per spec, ignore invalid custom section.
                    if let Ok(mut reader) = section.get_name_section_reader() {
                        while let Ok(entry) = reader.read() {
                            if let Name::Module(name) = entry {
                                if let Ok(name) = name.get_name() {
                                    Arc::get_mut(&mut inner.names).unwrap().module_name =
                                        Some(name.to_string());
                                }
                                break;
                            }
                        }
                    }
                }
                _ => {
                    // skip other sections
                }
            }
        }

        inner.imports = imports.into();
        inner.exports = exports.into();
        Ok(())
    }

    /// Register this module's stack frame information into the global scope.
    ///
    /// This is required to ensure that any traps can be properly symbolicated.
    pub(crate) fn register_frame_info(&self) {
        let mut info = self.inner.frame_info_registration.lock().unwrap();
        if info.is_some() {
            return;
        }
        *info = Some(FRAME_INFO.register(&self.inner.names, &self.inner.compiled));
    }
}