1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//! Support for compiling with Cranelift.
//!
//! This crate provides an implementation of [`Compiler`] in the form of
//! [`Cranelift`].

// # How does Wasmtime prevent stack overflow?
//
// A few locations throughout the codebase link to this file to explain
// interrupts and stack overflow. To start off, let's take a look at stack
// overflow. Wasm code is well-defined to have stack overflow being recoverable
// and raising a trap, so we need to handle this somehow! There's also an added
// constraint where as an embedder you frequently are running host-provided
// code called from wasm. WebAssembly and native code currently share the same
// call stack, so you want to make sure that your host-provided code will have
// enough call-stack available to it.
//
// Given all that, the way that stack overflow is handled is by adding a
// prologue check to all JIT functions for how much native stack is remaining.
// The `VMContext` pointer is the first argument to all functions, and the first
// field of this structure is `*const VMInterrupts` and the first field of that
// is the stack limit. Note that the stack limit in this case means "if the
// stack pointer goes below this, trap". Each JIT function which consumes stack
// space or isn't a leaf function starts off by loading the stack limit,
// checking it against the stack pointer, and optionally traps.
//
// This manual check allows the embedder (us) to give wasm a relatively precise
// amount of stack allocation. Using this scheme we reserve a chunk of stack
// for wasm code relative from where wasm code was called. This ensures that
// native code called by wasm should have native stack space to run, and the
// numbers of stack spaces here should all be configurable for various
// embeddings.
//
// Note that we do not consider each thread's stack guard page here. It's
// considered that if you hit that you still abort the whole program. This
// shouldn't happen most of the time because wasm is always stack-bound and
// it's up to the embedder to bound its own native stack.
//
// So all-in-all, that's how we implement stack checks. Note that stack checks
// cannot be disabled because it's a feature of core wasm semantics. This means
// that all functions almost always have a stack check prologue, and it's up to
// us to optimize away that cost as much as we can.
//
// For more information about the tricky bits of managing the reserved stack
// size of wasm, see the implementation in `traphandlers.rs` in the
// `update_stack_limit` function.
//
// # How is Wasmtime interrupted?
//
// Ok so given all that background of stack checks, the next thing we want to
// build on top of this is the ability to *interrupt* executing wasm code. This
// is useful to ensure that wasm always executes within a particular time slice
// or otherwise doesn't consume all CPU resources on a system. There are two
// major ways that interrupts are required:
//
// * Loops - likely immediately apparent but it's easy to write an infinite
//   loop in wasm, so we need the ability to interrupt loops.
// * Function entries - somewhat more subtle, but imagine a module where each
//   function calls the next function twice. This creates 2^n calls pretty
//   quickly, so a pretty small module can export a function with no loops
//   that takes an extremely long time to call.
//
// In many cases if an interrupt comes in you want to interrupt host code as
// well, but we're explicitly not considering that here. We're hoping that
// interrupting host code is largely left to the embedder (e.g. figuring out
// how to interrupt blocking syscalls) and they can figure that out. The purpose
// of this feature is to basically only give the ability to interrupt
// currently-executing wasm code (or triggering an interrupt as soon as wasm
// reenters itself).
//
// To implement interruption of loops we insert code at the head of all loops
// which checks the stack limit counter. If the counter matches a magical
// sentinel value that's impossible to be the real stack limit, then we
// interrupt the loop and trap. To implement interrupts of functions, we
// actually do the same thing where the magical sentinel value we use here is
// automatically considered as considering all stack pointer values as "you ran
// over your stack". This means that with a write of a magical value to one
// location we can interrupt both loops and function bodies.
//
// The "magical value" here is `usize::max_value() - N`. We reserve
// `usize::max_value()` for "the stack limit isn't set yet" and so -N is
// then used for "you got interrupted". We do a bit of patching afterwards to
// translate a stack overflow into an interrupt trap if we see that an
// interrupt happened. Note that `N` here is a medium-size-ish nonzero value
// chosen in coordination with the cranelift backend. Currently it's 32k. The
// value of N is basically a threshold in the backend for "anything less than
// this requires only one branch in the prologue, any stack size bigger requires
// two branches". Naturally we want most functions to have one branch, but we
// also need to actually catch stack overflow, so for now 32k is chosen and it's
// assume no valid stack pointer will ever be `usize::max_value() - 32k`.

use crate::func_environ::{get_func_name, FuncEnvironment};
use cranelift_codegen::ir::{self, ExternalName};
use cranelift_codegen::machinst::buffer::MachSrcLoc;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::{binemit, isa, Context};
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, FuncTranslator};
use std::convert::TryFrom;
use std::sync::Mutex;
use wasmtime_environ::{
    CompileError, CompiledFunction, Compiler, FunctionAddressMap, FunctionBodyData,
    InstructionAddressMap, ModuleTranslation, Relocation, RelocationTarget, StackMapInformation,
    TrapInformation,
};

mod func_environ;

/// Implementation of a relocation sink that just saves all the information for later
struct RelocSink {
    /// Current function index.
    func_index: FuncIndex,

    /// Relocations recorded for the function.
    func_relocs: Vec<Relocation>,
}

impl binemit::RelocSink for RelocSink {
    fn reloc_block(
        &mut self,
        _offset: binemit::CodeOffset,
        _reloc: binemit::Reloc,
        _block_offset: binemit::CodeOffset,
    ) {
        // This should use the `offsets` field of `ir::Function`.
        panic!("block headers not yet implemented");
    }
    fn reloc_external(
        &mut self,
        offset: binemit::CodeOffset,
        _srcloc: ir::SourceLoc,
        reloc: binemit::Reloc,
        name: &ExternalName,
        addend: binemit::Addend,
    ) {
        let reloc_target = if let ExternalName::User { namespace, index } = *name {
            debug_assert_eq!(namespace, 0);
            RelocationTarget::UserFunc(FuncIndex::from_u32(index))
        } else if let ExternalName::LibCall(libcall) = *name {
            RelocationTarget::LibCall(libcall)
        } else {
            panic!("unrecognized external name")
        };
        self.func_relocs.push(Relocation {
            reloc,
            reloc_target,
            offset,
            addend,
        });
    }

    fn reloc_constant(
        &mut self,
        _code_offset: binemit::CodeOffset,
        _reloc: binemit::Reloc,
        _constant_offset: ir::ConstantOffset,
    ) {
        // Do nothing for now: cranelift emits constant data after the function code and also emits
        // function code with correct relative offsets to the constant data.
    }

    fn reloc_jt(&mut self, offset: binemit::CodeOffset, reloc: binemit::Reloc, jt: ir::JumpTable) {
        self.func_relocs.push(Relocation {
            reloc,
            reloc_target: RelocationTarget::JumpTable(self.func_index, jt),
            offset,
            addend: 0,
        });
    }
}

impl RelocSink {
    /// Return a new `RelocSink` instance.
    fn new(func_index: FuncIndex) -> Self {
        Self {
            func_index,
            func_relocs: Vec::new(),
        }
    }
}

/// Implementation of a trap sink that simply stores all trap info in-memory
#[derive(Default)]
struct TrapSink {
    /// The in-memory vector of trap info
    traps: Vec<TrapInformation>,
}

impl TrapSink {
    /// Create a new `TrapSink`
    fn new() -> Self {
        Self::default()
    }
}

impl binemit::TrapSink for TrapSink {
    fn trap(
        &mut self,
        code_offset: binemit::CodeOffset,
        source_loc: ir::SourceLoc,
        trap_code: ir::TrapCode,
    ) {
        self.traps.push(TrapInformation {
            code_offset,
            source_loc,
            trap_code,
        });
    }
}

#[derive(Default)]
struct StackMapSink {
    infos: Vec<StackMapInformation>,
}

impl binemit::StackMapSink for StackMapSink {
    fn add_stack_map(&mut self, code_offset: binemit::CodeOffset, stack_map: binemit::StackMap) {
        self.infos.push(StackMapInformation {
            code_offset,
            stack_map,
        });
    }
}

impl StackMapSink {
    fn finish(mut self) -> Vec<StackMapInformation> {
        self.infos.sort_unstable_by_key(|info| info.code_offset);
        self.infos
    }
}

fn get_function_address_map<'data>(
    context: &Context,
    data: &FunctionBodyData<'data>,
    body_len: usize,
    isa: &dyn isa::TargetIsa,
) -> FunctionAddressMap {
    let mut instructions = Vec::new();

    if let Some(ref mcr) = &context.mach_compile_result {
        // New-style backend: we have a `MachCompileResult` that will give us `MachSrcLoc` mapping
        // tuples.
        for &MachSrcLoc { start, end, loc } in mcr.buffer.get_srclocs_sorted() {
            instructions.push(InstructionAddressMap {
                srcloc: loc,
                code_offset: start as usize,
                code_len: (end - start) as usize,
            });
        }
    } else {
        // Old-style backend: we need to traverse the instruction/encoding info in the function.
        let func = &context.func;
        let mut blocks = func.layout.blocks().collect::<Vec<_>>();
        blocks.sort_by_key(|block| func.offsets[*block]); // Ensure inst offsets always increase

        let encinfo = isa.encoding_info();
        for block in blocks {
            for (offset, inst, size) in func.inst_offsets(block, &encinfo) {
                let srcloc = func.srclocs[inst];
                instructions.push(InstructionAddressMap {
                    srcloc,
                    code_offset: offset as usize,
                    code_len: size as usize,
                });
            }
        }
    }

    // Generate artificial srcloc for function start/end to identify boundary
    // within module. Similar to FuncTranslator::cur_srcloc(): it will wrap around
    // if byte code is larger than 4 GB.
    let start_srcloc = ir::SourceLoc::new(data.module_offset as u32);
    let end_srcloc = ir::SourceLoc::new((data.module_offset + data.data.len()) as u32);

    FunctionAddressMap {
        instructions,
        start_srcloc,
        end_srcloc,
        body_offset: 0,
        body_len,
    }
}

/// A compiler that compiles a WebAssembly module with Cranelift, translating the Wasm to Cranelift IR,
/// optimizing it and then translating to assembly.
#[derive(Default)]
pub struct Cranelift {
    translators: Mutex<Vec<FuncTranslator>>,
}

impl Cranelift {
    fn take_translator(&self) -> FuncTranslator {
        let candidate = self.translators.lock().unwrap().pop();
        candidate.unwrap_or_else(FuncTranslator::new)
    }

    fn save_translator(&self, translator: FuncTranslator) {
        self.translators.lock().unwrap().push(translator);
    }
}

impl Compiler for Cranelift {
    fn compile_function(
        &self,
        translation: &ModuleTranslation<'_>,
        func_index: DefinedFuncIndex,
        input: &FunctionBodyData<'_>,
        isa: &dyn isa::TargetIsa,
    ) -> Result<CompiledFunction, CompileError> {
        let module = &translation.module;
        let tunables = &translation.tunables;
        let func_index = module.func_index(func_index);
        let mut context = Context::new();
        context.func.name = get_func_name(func_index);
        context.func.signature = module.native_func_signature(func_index).clone();
        if tunables.debug_info {
            context.func.collect_debug_info();
        }

        let mut func_env = FuncEnvironment::new(isa.frontend_config(), module, tunables);

        // We use these as constant offsets below in
        // `stack_limit_from_arguments`, so assert their values here. This
        // allows the closure below to get coerced to a function pointer, as
        // needed by `ir::Function`.
        //
        // Otherwise our stack limit is specially calculated from the vmctx
        // argument, where we need to load the `*const VMInterrupts`
        // pointer, and then from that pointer we need to load the stack
        // limit itself. Note that manual register allocation is needed here
        // too due to how late in the process this codegen happens.
        //
        // For more information about interrupts and stack checks, see the
        // top of this file.
        let vmctx = context
            .func
            .create_global_value(ir::GlobalValueData::VMContext);
        let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
            base: vmctx,
            offset: i32::try_from(func_env.offsets.vmctx_interrupts())
                .unwrap()
                .into(),
            global_type: isa.pointer_type(),
            readonly: true,
        });
        let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
            base: interrupts_ptr,
            offset: i32::try_from(func_env.offsets.vminterrupts_stack_limit())
                .unwrap()
                .into(),
            global_type: isa.pointer_type(),
            readonly: false,
        });
        context.func.stack_limit = Some(stack_limit);
        let mut func_translator = self.take_translator();
        let result = func_translator.translate(
            translation.module_translation.as_ref().unwrap(),
            input.data,
            input.module_offset,
            &mut context.func,
            &mut func_env,
        );
        self.save_translator(func_translator);
        result?;

        let mut code_buf: Vec<u8> = Vec::new();
        let mut reloc_sink = RelocSink::new(func_index);
        let mut trap_sink = TrapSink::new();
        let mut stack_map_sink = StackMapSink::default();
        context
            .compile_and_emit(
                isa,
                &mut code_buf,
                &mut reloc_sink,
                &mut trap_sink,
                &mut stack_map_sink,
            )
            .map_err(|error| {
                CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
            })?;

        let unwind_info = context.create_unwind_info(isa).map_err(|error| {
            CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
        })?;

        let address_transform = get_function_address_map(&context, input, code_buf.len(), isa);

        let ranges = if tunables.debug_info {
            let ranges = context.build_value_labels_ranges(isa).map_err(|error| {
                CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
            })?;
            Some(ranges)
        } else {
            None
        };

        Ok(CompiledFunction {
            body: code_buf,
            jt_offsets: context.func.jt_offsets,
            relocations: reloc_sink.func_relocs,
            address_map: address_transform,
            value_labels_ranges: ranges.unwrap_or(Default::default()),
            stack_slots: context.func.stack_slots,
            traps: trap_sink.traps,
            unwind_info,
            stack_maps: stack_map_sink.finish(),
        })
    }
}