1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
#![no_std]
#![forbid(missing_docs)]

//! A library for defining enums that can be used in compact bit sets. It supports enums up to 128
//! variants, and has a macro to use these sets in constants.
//!
//! For serde support, enable the `serde` feature.
//!
//! # Defining enums for use with EnumSet
//!
//! Enums to be used with [`EnumSet`] should be defined using `#[derive(EnumSetType)]`:
//!
//! ```rust
//! # use enumset::*;
//! #[derive(EnumSetType, Debug)]
//! pub enum Enum {
//!    A, B, C, D, E, F, G,
//! }
//! ```
//!
//! For more information on more advanced use cases, see the documentation for [`EnumSetType`].
//!
//! # Working with EnumSets
//!
//! EnumSets can be constructed via [`EnumSet::new()`] like a normal set. In addition,
//! `#[derive(EnumSetType)]` creates operator overloads that allow you to create EnumSets like so:
//!
//! ```rust
//! # use enumset::*;
//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G }
//! let new_set = Enum::A | Enum::C | Enum::G;
//! assert_eq!(new_set.len(), 3);
//! ```
//!
//! All bitwise operations you would expect to work on bitsets also work on both EnumSets and
//! enums with `#[derive(EnumSetType)]`:
//! ```rust
//! # use enumset::*;
//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G }
//! // Intersection of sets
//! assert_eq!((Enum::A | Enum::B) & Enum::C, EnumSet::empty());
//! assert_eq!((Enum::A | Enum::B) & Enum::A, Enum::A);
//! assert_eq!(Enum::A & Enum::B, EnumSet::empty());
//!
//! // Symmetric difference of sets
//! assert_eq!((Enum::A | Enum::B) ^ (Enum::B | Enum::C), Enum::A | Enum::C);
//! assert_eq!(Enum::A ^ Enum::C, Enum::A | Enum::C);
//!
//! // Difference of sets
//! assert_eq!((Enum::A | Enum::B | Enum::C) - Enum::B, Enum::A | Enum::C);
//!
//! // Complement of sets
//! assert_eq!(!(Enum::E | Enum::G), Enum::A | Enum::B | Enum::C | Enum::D | Enum::F);
//! ```
//!
//! The [`enum_set!`] macro allows you to create EnumSets in constant contexts:
//!
//! ```rust
//! # use enumset::*;
//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G }
//! const CONST_SET: EnumSet<Enum> = enum_set!(Enum::A | Enum::B);
//! assert_eq!(CONST_SET, Enum::A | Enum::B);
//! ```
//!
//! Mutable operations on the [`EnumSet`] otherwise similarly to Rust's builtin sets:
//!
//! ```rust
//! # use enumset::*;
//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G }
//! let mut set = EnumSet::new();
//! set.insert(Enum::A);
//! set.insert_all(Enum::E | Enum::G);
//! assert!(set.contains(Enum::A));
//! assert!(!set.contains(Enum::B));
//! assert_eq!(set, Enum::A | Enum::E | Enum::G);
//! ```

pub use wasmer_enumset_derive::*;

use core::cmp::Ordering;
use core::fmt;
use core::fmt::{Debug, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::ops::*;

use num_traits::*;

#[doc(hidden)]
/// Everything in this module is internal API and may change at any time.
pub mod __internal {
    use super::*;

    /// A struct used to type check [`enum_set!`].
    pub struct EnumSetSameTypeHack<'a, T: EnumSetType + 'static> {
        pub unified: &'a [T],
        pub enum_set: EnumSet<T>,
    }

    /// A reexport of core to allow our macros to be generic to std vs core.
    pub use ::core as core_export;

    /// A reexport of serde so there is no requirement to depend on serde.
    #[cfg(feature = "serde")] pub use serde2 as serde;

    /// The actual members of EnumSetType. Put here to avoid polluting global namespaces.
    pub unsafe trait EnumSetTypePrivate {
        /// The underlying type used to store the bitset.
        type Repr: EnumSetTypeRepr;
        /// A mask of bits that are valid in the bitset.
        const ALL_BITS: Self::Repr;

        /// Converts an enum of this type into its bit position.
        fn enum_into_u32(self) -> u32;
        /// Converts a bit position into an enum value.
        unsafe fn enum_from_u32(val: u32) -> Self;

        /// Serializes the `EnumSet`.
        ///
        /// This and `deserialize` are part of the `EnumSetType` trait so the procedural derive
        /// can control how `EnumSet` is serialized.
        #[cfg(feature = "serde")]
        fn serialize<S: serde::Serializer>(set: EnumSet<Self>, ser: S) -> Result<S::Ok, S::Error>
            where Self: EnumSetType;
        /// Deserializes the `EnumSet`.
        #[cfg(feature = "serde")]
        fn deserialize<'de, D: serde::Deserializer<'de>>(de: D) -> Result<EnumSet<Self>, D::Error>
            where Self: EnumSetType;
    }
}
use crate::__internal::EnumSetTypePrivate;
#[cfg(feature = "serde")] use crate::__internal::serde;
#[cfg(feature = "serde")] use crate::serde::{Serialize, Deserialize};

mod private {
    use super::*;

    /// A trait marking valid underlying bitset storage types and providing the
    /// operations `EnumSet` and related types use.
    pub trait EnumSetTypeRepr :
        PrimInt + WrappingSub + CheckedShl + Debug + Hash + FromPrimitive + ToPrimitive +
        AsPrimitive<u8> + AsPrimitive<u16> + AsPrimitive<u32> + AsPrimitive<u64> +
        AsPrimitive<u128> + AsPrimitive<usize>
    {
        const WIDTH: u32;

        fn from_u8(v: u8) -> Self;
        fn from_u16(v: u16) -> Self;
        fn from_u32(v: u32) -> Self;
        fn from_u64(v: u64) -> Self;
        fn from_u128(v: u128) -> Self;
        fn from_usize(v: usize) -> Self;
    }
    macro_rules! prim {
        ($name:ty, $width:expr) => {
            impl EnumSetTypeRepr for $name {
                const WIDTH: u32 = $width;
                fn from_u8(v: u8) -> Self { v.as_() }
                fn from_u16(v: u16) -> Self { v.as_() }
                fn from_u32(v: u32) -> Self { v.as_() }
                fn from_u64(v: u64) -> Self { v.as_() }
                fn from_u128(v: u128) -> Self { v.as_() }
                fn from_usize(v: usize) -> Self { v.as_() }
            }
        }
    }
    prim!(u8  , 8  );
    prim!(u16 , 16 );
    prim!(u32 , 32 );
    prim!(u64 , 64 );
    prim!(u128, 128);
}
use crate::private::EnumSetTypeRepr;

/// The trait used to define enum types that may be used with [`EnumSet`].
///
/// This trait should be implemented using `#[derive(EnumSetType)]`. Its internal structure is
/// not stable, and may change at any time.
///
/// # Custom Derive
///
/// Any C-like enum is supported, as long as there are no more than 128 variants in the enum,
/// and no variant discriminator is larger than 127.
///
/// The custom derive for [`EnumSetType`] automatically creates implementations of [`PartialEq`],
/// [`Sub`], [`BitAnd`], [`BitOr`], [`BitXor`], and [`Not`] allowing the enum to be used as
/// if it were an [`EnumSet`] in expressions. This can be disabled by adding an `#[enumset(no_ops)]`
/// annotation to the enum.
///
/// The custom derive for `EnumSetType` automatically implements [`Copy`], [`Clone`], [`Eq`], and
/// [`PartialEq`] on the enum. These are required for the [`EnumSet`] to function.
///
/// In addition, if you have renamed the `enumset` crate in your crate, you can use the
/// `#[enumset(crate_name = "enumset2")]` attribute to tell the custom derive to use that name
/// instead.
///
/// Attributes controlling the serialization of an `EnumSet` are documented in
/// [its documentation](./struct.EnumSet.html#serialization).
///
/// # Examples
///
/// Deriving a plain EnumSetType:
///
/// ```rust
/// # use enumset::*;
/// #[derive(EnumSetType)]
/// pub enum Enum {
///    A, B, C, D, E, F, G,
/// }
/// ```
///
/// Deriving a sparse EnumSetType:
///
/// ```rust
/// # use enumset::*;
/// #[derive(EnumSetType)]
/// pub enum SparseEnum {
///    A = 10, B = 20, C = 30, D = 127,
/// }
/// ```
///
/// Deriving an EnumSetType without adding ops:
///
/// ```rust
/// # use enumset::*;
/// #[derive(EnumSetType)]
/// #[enumset(no_ops)]
/// pub enum NoOpsEnum {
///    A, B, C, D, E, F, G,
/// }
/// ```
pub unsafe trait EnumSetType: Copy + Eq + EnumSetTypePrivate { }

/// An efficient set type for enums.
///
/// It is implemented using a bitset stored using the smallest integer that can fit all bits
/// in the underlying enum. In general, an enum variant with a numeric value of `n` is stored in
/// the nth least significant bit (corresponding with a mask of, e.g. `1 << enum as u32`).
///
/// # Serialization
///
/// When the `serde` feature is enabled, `EnumSet`s can be serialized and deserialized using
/// the `serde` crate. The exact serialization format can be controlled with additional attributes
/// on the enum type. These attributes are valid regardless of whether the `serde` feature
/// is enabled.
///
/// By default, `EnumSet`s serialize by directly writing out the underlying bitset as an integer
/// of the smallest type that can fit in the underlying enum. You can add a
/// `#[enumset(serialize_repr = "u8")]` attribute to your enum to control the integer type used
/// for serialization. This can be important for avoiding unintentional breaking changes when
/// `EnumSet`s are serialized with formats like `bincode`.
///
/// By default, unknown bits are ignored and silently removed from the bitset. To override this
/// behavior, you can add a `#[enumset(serialize_deny_unknown)]` attribute. This will cause
/// deserialization to fail if an invalid bit is set.
///
/// In addition, the `#[enumset(serialize_as_list)]` attribute causes the `EnumSet` to be
/// instead serialized as a list of enum variants. This requires your enum type implement
/// [`Serialize`] and [`Deserialize`]. Note that this is a breaking change
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct EnumSet<T: EnumSetType> {
    #[doc(hidden)]
    /// This is public due to the [`enum_set!`] macro.
    /// This is **NOT** public API and may change at any time.
    pub __enumset_underlying: T::Repr
}
impl <T: EnumSetType> EnumSet<T> {
    fn mask(bit: u32) -> T::Repr {
        Shl::<usize>::shl(T::Repr::one(), bit as usize)
    }
    fn has_bit(&self, bit: u32) -> bool {
        let mask = Self::mask(bit);
        self.__enumset_underlying & mask == mask
    }
    fn partial_bits(bits: u32) -> T::Repr {
        T::Repr::one().checked_shl(bits as u32)
            .unwrap_or(T::Repr::zero())
            .wrapping_sub(&T::Repr::one())
    }

    // Returns all bits valid for the enum
    fn all_bits() -> T::Repr {
        T::ALL_BITS
    }

    /// Creates an empty `EnumSet`.
    pub fn new() -> Self {
        EnumSet { __enumset_underlying: T::Repr::zero() }
    }

    /// Returns an `EnumSet` containing a single element.
    pub fn only(t: T) -> Self {
        EnumSet { __enumset_underlying: Self::mask(t.enum_into_u32()) }
    }

    /// Creates an empty `EnumSet`.
    ///
    /// This is an alias for [`EnumSet::new`].
    pub fn empty() -> Self {
        Self::new()
    }

    /// Returns an `EnumSet` containing all valid variants of the enum.
    pub fn all() -> Self {
        EnumSet { __enumset_underlying: Self::all_bits() }
    }

    /// Total number of bits used by this type. Note that the actual amount of space used is
    /// rounded up to the next highest integer type (`u8`, `u16`, `u32`, `u64`, or `u128`).
    ///
    /// This is the same as [`EnumSet::variant_count`] except in enums with "sparse" variants.
    /// (e.g. `enum Foo { A = 10, B = 20 }`)
    pub fn bit_width() -> u32 {
        T::Repr::WIDTH - T::ALL_BITS.leading_zeros()
    }

    /// The number of valid variants that this type can contain.
    ///
    /// This is the same as [`EnumSet::bit_width`] except in enums with "sparse" variants.
    /// (e.g. `enum Foo { A = 10, B = 20 }`)
    pub fn variant_count() -> u32 {
        T::ALL_BITS.count_ones()
    }

    /// Returns the number of elements in this set.
    pub fn len(&self) -> usize {
        self.__enumset_underlying.count_ones() as usize
    }
    /// Returns `true` if the set contains no elements.
    pub fn is_empty(&self) -> bool {
        self.__enumset_underlying.is_zero()
    }
    /// Removes all elements from the set.
    pub fn clear(&mut self) {
        self.__enumset_underlying = T::Repr::zero()
    }

    /// Returns `true` if `self` has no elements in common with `other`. This is equivalent to
    /// checking for an empty intersection.
    pub fn is_disjoint(&self, other: Self) -> bool {
        (*self & other).is_empty()
    }
    /// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the
    /// values in `other`.
    pub fn is_superset(&self, other: Self) -> bool {
        (*self & other).__enumset_underlying == other.__enumset_underlying
    }
    /// Returns `true` if the set is a subset of another, i.e., `other` contains at least all
    /// the values in `self`.
    pub fn is_subset(&self, other: Self) -> bool {
        other.is_superset(*self)
    }

    /// Returns a set containing any elements present in either set.
    pub fn union(&self, other: Self) -> Self {
        EnumSet { __enumset_underlying: self.__enumset_underlying | other.__enumset_underlying }
    }
    /// Returns a set containing every element present in both sets.
    pub fn intersection(&self, other: Self) -> Self {
        EnumSet { __enumset_underlying: self.__enumset_underlying & other.__enumset_underlying }
    }
    /// Returns a set containing element present in `self` but not in `other`.
    pub fn difference(&self, other: Self) -> Self {
        EnumSet { __enumset_underlying: self.__enumset_underlying & !other.__enumset_underlying }
    }
    /// Returns a set containing every element present in either `self` or `other`, but is not
    /// present in both.
    pub fn symmetrical_difference(&self, other: Self) -> Self {
        EnumSet { __enumset_underlying: self.__enumset_underlying ^ other.__enumset_underlying }
    }
    /// Returns a set containing all enum variants not in this set.
    pub fn complement(&self) -> Self {
        EnumSet { __enumset_underlying: !self.__enumset_underlying & Self::all_bits() }
    }

    /// Checks whether this set contains a value.
    pub fn contains(&self, value: T) -> bool {
        self.has_bit(value.enum_into_u32())
    }

    /// Adds a value to this set.
    ///
    /// If the set did not have this value present, `true` is returned.
    ///
    /// If the set did have this value present, `false` is returned.
    pub fn insert(&mut self, value: T) -> bool {
        let contains = !self.contains(value);
        self.__enumset_underlying = self.__enumset_underlying | Self::mask(value.enum_into_u32());
        contains
    }
    /// Removes a value from this set. Returns whether the value was present in the set.
    pub fn remove(&mut self, value: T) -> bool {
        let contains = self.contains(value);
        self.__enumset_underlying = self.__enumset_underlying & !Self::mask(value.enum_into_u32());
        contains
    }

    /// Adds all elements in another set to this one.
    pub fn insert_all(&mut self, other: Self) {
        self.__enumset_underlying = self.__enumset_underlying | other.__enumset_underlying
    }
    /// Removes all values in another set from this one.
    pub fn remove_all(&mut self, other: Self) {
        self.__enumset_underlying = self.__enumset_underlying & !other.__enumset_underlying
    }

    /// Creates an iterator over the values in this set.
    ///
    /// Note that iterator invalidation is impossible as the iterator contains a copy of this type,
    /// rather than holding a reference to it.
    pub fn iter(&self) -> EnumSetIter<T> {
        EnumSetIter(*self, 0)
    }
}

/// Helper macro for generating conversion functions.
macro_rules! conversion_impls {
    (
        $(for_num!(
            $underlying:ty, $underlying_str:expr, $from_fn:ident, $to_fn:ident,
            $from:ident $try_from:ident $from_truncated:ident
            $to:ident $try_to:ident $to_truncated:ident
        );)*
    ) => {
        impl <T : EnumSetType> EnumSet<T> {$(
            #[doc = "Returns a `"]
            #[doc = $underlying_str]
            #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
                     not fit in a `"]
            #[doc = $underlying_str]
            #[doc = "`, this method will panic."]
            pub fn $to(&self) -> $underlying {
                self.$try_to().expect("Bitset will not fit into this type.")
            }

            #[doc = "Tries to return a `"]
            #[doc = $underlying_str]
            #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
                     not fit in a `"]
            #[doc = $underlying_str]
            #[doc = "`, this method will instead return `None`."]
            pub fn $try_to(&self) -> Option<$underlying> {
                self.__enumset_underlying.$to_fn()
            }

            #[doc = "Returns a truncated `"]
            #[doc = $underlying_str]
            #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
                     not fit in a `"]
            #[doc = $underlying_str]
            #[doc = "`, this method will truncate any bits that don't fit."]
            pub fn $to_truncated(&self) -> $underlying {
                AsPrimitive::<$underlying>::as_(self.__enumset_underlying)
            }

            #[doc = "Constructs a bitset from a `"]
            #[doc = $underlying_str]
            #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \
                     method will panic."]
            pub fn $from(bits: $underlying) -> Self {
                Self::$try_from(bits).expect("Bitset contains invalid variants.")
            }

            #[doc = "Attempts to constructs a bitset from a `"]
            #[doc = $underlying_str]
            #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \
                     method will return `None`."]
            pub fn $try_from(bits: $underlying) -> Option<Self> {
                let bits = <T::Repr as FromPrimitive>::$from_fn(bits);
                let mask = Self::all().__enumset_underlying;
                bits.and_then(|bits| if (bits & !mask) == T::Repr::zero() {
                    Some(EnumSet { __enumset_underlying: bits })
                } else {
                    None
                })
            }

            #[doc = "Constructs a bitset from a `"]
            #[doc = $underlying_str]
            #[doc = "`, ignoring invalid variants."]
            pub fn $from_truncated(bits: $underlying) -> Self {
                let mask = Self::all().$to_truncated();
                let bits = <T::Repr as EnumSetTypeRepr>::$from_fn(bits & mask);
                EnumSet { __enumset_underlying: bits }
            }
        )*}
    }
}
conversion_impls! {
    for_num!(u8, "u8", from_u8, to_u8,
             from_u8 try_from_u8 from_u8_truncated as_u8 try_as_u8 as_u8_truncated);
    for_num!(u16, "u16", from_u16, to_u16,
             from_u16 try_from_u16 from_u16_truncated as_u16 try_as_u16 as_u16_truncated);
    for_num!(u32, "u32", from_u32, to_u32,
             from_u32 try_from_u32 from_u32_truncated as_u32 try_as_u32 as_u32_truncated);
    for_num!(u64, "u64", from_u64, to_u64,
             from_u64 try_from_u64 from_u64_truncated as_u64 try_as_u64 as_u64_truncated);
    for_num!(u128, "u128", from_u128, to_u128,
             from_u128 try_from_u128 from_u128_truncated as_u128 try_as_u128 as_u128_truncated);
    for_num!(usize, "usize", from_usize, to_usize,
             from_usize try_from_usize from_usize_truncated
             as_usize try_as_usize as_usize_truncated);
}

impl <T: EnumSetType> Default for EnumSet<T> {
    /// Returns an empty set.
    fn default() -> Self {
        Self::new()
    }
}

impl <T: EnumSetType> IntoIterator for EnumSet<T> {
    type Item = T;
    type IntoIter = EnumSetIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl <T: EnumSetType, O: Into<EnumSet<T>>> Sub<O> for EnumSet<T> {
    type Output = Self;
    fn sub(self, other: O) -> Self::Output {
        self.difference(other.into())
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitAnd<O> for EnumSet<T> {
    type Output = Self;
    fn bitand(self, other: O) -> Self::Output {
        self.intersection(other.into())
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitOr<O> for EnumSet<T> {
    type Output = Self;
    fn bitor(self, other: O) -> Self::Output {
        self.union(other.into())
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitXor<O> for EnumSet<T> {
    type Output = Self;
    fn bitxor(self, other: O) -> Self::Output {
        self.symmetrical_difference(other.into())
    }
}

impl <T: EnumSetType, O: Into<EnumSet<T>>> SubAssign<O> for EnumSet<T> {
    fn sub_assign(&mut self, rhs: O) {
        *self = *self - rhs;
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitAndAssign<O> for EnumSet<T> {
    fn bitand_assign(&mut self, rhs: O) {
        *self = *self & rhs;
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitOrAssign<O> for EnumSet<T> {
    fn bitor_assign(&mut self, rhs: O) {
        *self = *self | rhs;
    }
}
impl <T: EnumSetType, O: Into<EnumSet<T>>> BitXorAssign<O> for EnumSet<T> {
    fn bitxor_assign(&mut self, rhs: O) {
        *self = *self ^ rhs;
    }
}

impl <T: EnumSetType> Not for EnumSet<T> {
    type Output = Self;
    fn not(self) -> Self::Output {
        self.complement()
    }
}

impl <T: EnumSetType> From<T> for EnumSet<T> {
    fn from(t: T) -> Self {
        EnumSet::only(t)
    }
}

impl <T: EnumSetType> PartialEq<T> for EnumSet<T> {
    fn eq(&self, other: &T) -> bool {
        self.__enumset_underlying == EnumSet::<T>::mask(other.enum_into_u32())
    }
}
impl <T: EnumSetType + Debug> Debug for EnumSet<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let mut is_first = true;
        f.write_str("EnumSet(")?;
        for v in self.iter() {
            if !is_first { f.write_str(" | ")?; }
            is_first = false;
            v.fmt(f)?;
        }
        f.write_str(")")?;
        Ok(())
    }
}

impl <T: EnumSetType> Hash for EnumSet<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.__enumset_underlying.hash(state)
    }
}
impl <T: EnumSetType> PartialOrd for EnumSet<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.__enumset_underlying.partial_cmp(&other.__enumset_underlying)
    }
}
impl <T: EnumSetType> Ord for EnumSet<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.__enumset_underlying.cmp(&other.__enumset_underlying)
    }
}

#[cfg(feature = "serde")]
impl <T: EnumSetType> Serialize for EnumSet<T> {
    fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        T::serialize(*self, serializer)
    }
}

#[cfg(feature = "serde")]
impl <'de, T: EnumSetType> Deserialize<'de> for EnumSet<T> {
    fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        T::deserialize(deserializer)
    }
}

/// The iterator used by [`EnumSet`]s.
#[derive(Clone, Debug)]
pub struct EnumSetIter<T: EnumSetType>(EnumSet<T>, u32);
impl <T: EnumSetType> Iterator for EnumSetIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        while self.1 < EnumSet::<T>::bit_width() {
            let bit = self.1;
            self.1 += 1;
            if self.0.has_bit(bit) {
                return unsafe { Some(T::enum_from_u32(bit)) }
            }
        }
        None
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let left_mask = !EnumSet::<T>::partial_bits(self.1);
        let left = (self.0.__enumset_underlying & left_mask).count_ones() as usize;
        (left, Some(left))
    }
}

impl<T: EnumSetType> ExactSizeIterator for EnumSetIter<T> {}

impl<T: EnumSetType> Extend<T> for EnumSet<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        iter.into_iter().for_each(|v| { self.insert(v); });
    }
}

impl<T: EnumSetType> FromIterator<T> for EnumSet<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut set = EnumSet::default();
        set.extend(iter);
        set
    }
}

impl<T: EnumSetType> Extend<EnumSet<T>> for EnumSet<T> {
    fn extend<I: IntoIterator<Item = EnumSet<T>>>(&mut self, iter: I) {
        iter.into_iter().for_each(|v| { self.insert_all(v); });
    }
}

impl<T: EnumSetType> FromIterator<EnumSet<T>> for EnumSet<T> {
    fn from_iter<I: IntoIterator<Item = EnumSet<T>>>(iter: I) -> Self {
        let mut set = EnumSet::default();
        set.extend(iter);
        set
    }
}

/// Creates a EnumSet literal, which can be used in const contexts.
///
/// The syntax used is `enum_set!(Type::A | Type::B | Type::C)`. Each variant must be of the same
/// type, or a error will occur at compile-time.
///
/// # Examples
///
/// ```rust
/// # use enumset::*;
/// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C }
/// const CONST_SET: EnumSet<Enum> = enum_set!(Enum::A | Enum::B);
/// assert_eq!(CONST_SET, Enum::A | Enum::B);
/// ```
///
/// This macro is strongly typed. For example, the following will not compile:
///
/// ```compile_fail
/// # use enumset::*;
/// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C }
/// # #[derive(EnumSetType, Debug)] enum Enum2 { A, B, C }
/// let type_error = enum_set!(Enum::A | Enum2::B);
/// ```
#[macro_export]
macro_rules! enum_set {
    () => {
        $crate::EnumSet { __enumset_underlying: 0 }
    };
    ($($value:path)|* $(|)*) => {
        $crate::__internal::EnumSetSameTypeHack {
            unified: &[$($value,)*],
            enum_set: $crate::EnumSet {
                __enumset_underlying: 0 $(| (1 << ($value as u32)))*
            },
        }.enum_set
    };
}