1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! A tiny and incomplete wasm interpreter
//!
//! This module contains a tiny and incomplete wasm interpreter built on top of
//! `parity-wasm`'s module structure. Each `Interpreter` contains some state
//! about the execution of a wasm instance. The "incomplete" part here is
//! related to the fact that this is *only* used to execute the various
//! descriptor functions for wasm-bindgen.
//!
//! As a recap, the wasm-bindgen macro generate "descriptor functions" which
//! basically as a mapping of rustc's trait resolution in executable code. This
//! allows us to detect, after the macro is invoke, what trait selection did and
//! what types of functions look like. By executing descriptor functions they'll
//! each invoke a known import (with only one argument) some number of times,
//! which gives us a list of `u32` values to then decode.
//!
//! The interpreter here is only geared towards this one exact use case, so it's
//! quite small and likely not extra-efficient.

#![deny(missing_docs)]

extern crate parity_wasm;

use std::collections::HashMap;

use parity_wasm::elements::*;

/// A ready-to-go interpreter of a wasm module.
///
/// An interpreter currently represents effectively cached state. It is reused
/// between calls to `interpret` and is precomputed from a `Module`. It houses
/// state like the wasm stack, wasm memory, etc.
#[derive(Default)]
pub struct Interpreter {
    // Number of imported functions in the wasm module (used in index
    // calculations)
    imports: usize,

    // Function index of the `__wbindgen_describe` imported function. We special
    // case this to know when the environment's imported function is called.
    describe_idx: Option<u32>,

    // A mapping of string names to the function index, filled with all exported
    // functions.
    name_map: HashMap<String, u32>,

    // The numerical index of the code section in the wasm module, indexed into
    // the module's list of sections.
    code_idx: Option<usize>,

    // The current stack pointer (global 0) and wasm memory (the stack). Only
    // used in a limited capacity.
    sp: i32,
    mem: Vec<i32>,

    // The wasm stack. Note how it's just `i32` which is intentional, we don't
    // support other types.
    stack: Vec<i32>,

    // The descriptor which we're assembling, a list of `u32` entries. This is
    // very specific to wasm-bindgen and is the purpose for the existence of
    // this module.
    descriptor: Vec<u32>,
}

impl Interpreter {
    /// Creates a new interpreter from a provided `Module`, precomputing all
    /// information necessary to interpret further.
    ///
    /// Note that the `module` passed in to this function must be the same as
    /// the `module` passed to `interpret` below.
    pub fn new(module: &Module) -> Interpreter {
        let mut ret = Interpreter::default();

        // The descriptor functions shouldn't really use all that much memory
        // (the LLVM call stack, now the wasm stack). To handle that let's give
        // our selves a little bit of memory and set the stack pointer (global
        // 0) to the top.
        ret.mem = vec![0; 0x100];
        ret.sp = ret.mem.len() as i32;

        // Figure out where our code section, if any, is.
        for (i, s) in module.sections().iter().enumerate() {
            match s {
                Section::Code(_) => ret.code_idx = Some(i),
                _ => {}
            }
        }

        // Figure out where the `__wbindgen_describe` imported function is, if
        // it exists. We'll special case calls to this function as our
        // interpretation should only invoke this function as an imported
        // function.
        if let Some(i) = module.import_section() {
            ret.imports = i.functions();
            let mut idx = 0;
            for entry in i.entries() {
                match entry.external() {
                    External::Function(_) => idx += 1,
                    _ => continue,
                }
                if entry.module() != "__wbindgen_placeholder__" {
                    continue
                }
                if entry.field() != "__wbindgen_describe" {
                    continue
                }
                ret.describe_idx = Some(idx - 1 as u32);
            }
        }

        // Build up the mapping of exported functions to function indices.
        if let Some(e) = module.export_section() {
            for e in e.entries() {
                let i = match e.internal() {
                    Internal::Function(i) => i,
                    _ => continue,
                };
                ret.name_map.insert(e.field().to_string(), *i);
            }
        }

        return ret
    }

    /// Interprets the execution of the descriptor function `func`.
    ///
    /// This function will execute `func` in the `module` provided. Note that
    /// the `module` provided here must be the same as the one passed to `new`
    /// when this `Interpreter` was constructed.
    ///
    /// The `func` must be a wasm-bindgen descriptor function meaning that it
    /// doesn't do anything like use floats or i64. Instead all it should do is
    /// call other functions, sometimes some stack pointer manipulation, and
    /// then call the one imported `__wbindgen_describe` function. Anything else
    /// will cause this interpreter to panic.
    ///
    /// When the descriptor has finished running the assembled descriptor list
    /// is returned. The descriptor returned can then be re-parsed into an
    /// actual `Descriptor` in the cli-support crate.
    ///
    /// # Return value
    ///
    /// Returns `Some` if `func` was found in the `module` and `None` if it was
    /// not found in the `module`.
    pub fn interpret(&mut self, func: &str, module: &Module) -> Option<&[u32]> {
        self.descriptor.truncate(0);
        let idx = *self.name_map.get(func)?;
        let code = match &module.sections()[self.code_idx.unwrap()] {
            Section::Code(s) => s,
            _ => panic!(),
        };

        // We should have a blank wasm and LLVM stack at both the start and end
        // of the call.
        assert_eq!(self.sp, self.mem.len() as i32);
        assert_eq!(self.stack.len(), 0);
        self.call(idx, code);
        assert_eq!(self.stack.len(), 0);
        assert_eq!(self.sp, self.mem.len() as i32);
        Some(&self.descriptor)
    }

    fn call(&mut self, idx: u32, code: &CodeSection) {
        use parity_wasm::elements::Instruction::*;

        let idx = idx as usize;
        assert!(idx >= self.imports); // can't call imported functions
        let body = &code.bodies()[idx - self.imports];

        // Allocate space for our call frame's local variables. All local
        // variables should be of the `i32` type.
        assert!(body.locals().len() <= 1, "too many local types");
        let locals = body.locals()
            .get(0)
            .map(|i| {
                assert_eq!(i.value_type(), ValueType::I32);
                i.count()
            })
            .unwrap_or(0);
        let mut locals = vec![0; locals as usize];

        // Actual interpretation loop! We keep track of our stack's length to
        // recover it as part of the `Return` instruction, and otherwise this is
        // a pretty straightforward interpretation loop.
        let before = self.stack.len();
        for instr in body.code().elements() {
            match instr {
                I32Const(x) => self.stack.push(*x),
                SetLocal(i) => locals[*i as usize] = self.stack.pop().unwrap(),
                GetLocal(i) => self.stack.push(locals[*i as usize]),
                Call(idx) => {
                    // If this function is calling the `__wbindgen_describe`
                    // function, which we've precomputed the index for, then
                    // it's telling us about the next `u32` element in the
                    // descriptor to return. We "call" the imported function
                    // here by directly inlining it.
                    //
                    // Otherwise this is a normal call so we recurse.
                    if Some(*idx) == self.describe_idx {
                        self.descriptor.push(self.stack.pop().unwrap() as u32);
                    } else {
                        self.call(*idx, code);
                    }
                }
                GetGlobal(0) => self.stack.push(self.sp),
                SetGlobal(0) => self.sp = self.stack.pop().unwrap(),
                I32Sub => {
                    let b = self.stack.pop().unwrap();
                    let a = self.stack.pop().unwrap();
                    self.stack.push(a - b);
                }
                I32Add => {
                    let a = self.stack.pop().unwrap();
                    let b = self.stack.pop().unwrap();
                    self.stack.push(a + b);
                }
                I32Store(/* align = */ 2, offset) => {
                    let val = self.stack.pop().unwrap();
                    let addr = self.stack.pop().unwrap() as u32;
                    self.mem[((addr + *offset) as usize) / 4] = val;
                }
                I32Load(/* align = */ 2, offset) => {
                    let addr = self.stack.pop().unwrap() as u32;
                    self.stack.push(self.mem[((addr + *offset) as usize) / 4]);
                }
                Return => self.stack.truncate(before),
                End => break,

                // All other instructions shouldn't be used by our various
                // descriptor functions. LLVM optimizations may mean that some
                // of the above instructions aren't actually needed either, but
                // the above instructions have empirically been required when
                // executing our own test suite in wasm-bindgen.
                //
                // Note that LLVM may change over time to generate new
                // instructions in debug mode, and we'll have to react to those
                // sorts of changes as they arise.
                s => panic!("unknown instruction {:?}", s),
            }
        }
        assert_eq!(self.stack.len(), before);
    }
}