1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
mod and;
mod and_then;
mod boxed;
mod map;
mod map_err;
mod or;
mod or_else;
mod recover;
mod service;
mod unify;
mod unit;
mod wrap;

use futures::{future, Future, IntoFuture};

pub(crate) use ::generic::{Combine, Either, Func, HList, One, one, Tuple};
use ::reject::{CombineRejection, Reject, Rejection};
use ::route::{self, Route};

pub(crate) use self::and::And;
use self::and_then::AndThen;
pub use self::boxed::BoxedFilter;
pub(crate) use self::map::Map;
pub(crate) use self::map_err::MapErr;
pub(crate) use self::or::Or;
use self::or_else::OrElse;
use self::recover::Recover;
use self::unify::Unify;
use self::unit::Unit;
pub(crate) use self::wrap::{WrapSealed, Wrap};

// A crate-private base trait, allowing the actual `filter` method to change
// signatures without it being a breaking change.
pub trait FilterBase {
    type Extract: Tuple; // + Send;
    type Error: Reject;
    type Future: Future<Item=Self::Extract, Error=Self::Error> + Send;

    fn filter(&self) -> Self::Future;

    // crate-private for now

    fn map_err<F, E>(self, fun: F) -> MapErr<Self, F>
    where
        Self: Sized,
        F: Fn(Self::Error) -> E + Clone,
        E: ::std::fmt::Debug + Send,
    {
        MapErr {
            filter: self,
            callback: fun,
        }
    }

    fn unit(self) -> Unit<Self>
    where
        Self: Filter<Extract=((),)> + Sized,
    {
        Unit {
            filter: self,
        }
    }
}

/// This just makes use of rustdoc's ability to make compile_fail tests.
/// This is specifically testing to make sure `Filter::filter` isn't
/// able to be called from outside the crate (since rustdoc tests are
/// compiled as new crates).
///
/// ```compile_fail
/// use warp::Filter;
///
/// let _ = warp::any().filter();
/// ```
pub fn __warp_filter_compilefail_doctest() {
    // Duplicate code to make sure the code is otherwise valid.
    let _ = ::any().filter();
}

/// Composable request filters.
///
/// A `Filter` can optionally extract some data from a request, combine
/// it with others, mutate it, and return back some value as a reply. The
/// power of `Filter`s come from being able to isolate small subsets, and then
/// chain and reuse them in various parts of your app.
///
/// # Extracting Tuples
///
/// You may notice that several of these filters extract some tuple, often
/// times a tuple of just 1 item! Why?
///
/// If a filter extracts a `(String,)`, that simply means that it
/// extracts a `String`. If you were to `map` the filter, the argument type
/// would be exactly that, just a `String`.
///
/// What is it? It's just some type magic that allows for automatic combining
/// and flattening of tuples. Without it, combining two filters together with
/// `and`, where one extracted `()`, and another `String`, would mean the
/// `map` would be given a single argument of `((), String,)`, which is just
/// no fun.
pub trait Filter: FilterBase {
    /// Composes a new `Filter` that requires both this and the other to filter a request.
    ///
    /// Additionally, this will join together the extracted values of both
    /// filters, so that `map` and `and_then` receive them as separate arguments.
    ///
    /// If a `Filter` extracts nothing (so, `()`), combining with any other
    /// filter will simply discard the `()`. If a `Filter` extracts one or
    /// more items, combining will mean it extracts the values of itself
    /// combined with the other.
    ///
    /// # Example
    ///
    /// ```
    /// use warp::Filter;
    ///
    /// // Match `/hello/:name`...
    /// warp::path("hello")
    ///     .and(warp::path::param::<String>());
    /// ```
    fn and<F>(self, other: F) -> And<Self, F>
    where
        Self: Sized,
        //Self::Extract: HList + Combine<F::Extract>,
        <Self::Extract as Tuple>::HList: Combine<<F::Extract as Tuple>::HList>,
        F: Filter + Clone,
        F::Error: CombineRejection<Self::Error>,
    {
        And {
            first: self,
            second: other,
        }
    }

    /// Composes a new `Filter` of either this or the other filter.
    ///
    /// # Example
    ///
    /// ```
    /// use std::net::SocketAddr;
    /// use warp::Filter;
    ///
    /// // Match either `/:u32` or `/:socketaddr`
    /// warp::path::param::<u32>()
    ///     .or(warp::path::param::<SocketAddr>());
    /// ```
    fn or<F>(self, other: F) -> Or<Self, F>
    where
        Self: Sized,
        F: Filter,
        F::Error: CombineRejection<Self::Error>,
    {
        Or {
            first: self,
            second: other,
        }
    }

    /// Composes this `Filter` with a function receiving the extracted value.
    ///
    ///
    /// # Example
    ///
    /// ```
    /// use warp::Filter;
    ///
    /// // Map `/:id`
    /// warp::path::param().map(|id: u64| {
    ///   format!("Hello #{}", id)
    /// });
    /// ```
    ///
    /// # `Func`
    ///
    /// The generic `Func` trait is implemented for any function that receives
    /// the same arguments as this `Filter` extracts. In practice, this
    /// shouldn't ever bother you, and simply makes things feel more natural.
    ///
    /// For example, if three `Filter`s were combined together, suppose one
    /// extracts nothing (so `()`), and the other two extract two integers,
    /// a function that accepts exactly two integer arguments is allowed.
    /// Specifically, any `Fn(u32, u32)`.
    ///
    /// Without `Product` and `Func`, this would be a lot messier. First of
    /// all, the `()`s couldn't be discarded, and the tuples would be nested.
    /// So, instead, you'd need to pass an `Fn(((), (u32, u32)))`. That's just
    /// a single argument. Bleck!
    ///
    /// Even worse, the tuples would shuffle the types around depending on
    /// the exact invocation of `and`s. So, `unit.and(int).and(int)` would
    /// result in a different extracted type from `unit.and(int.and(int)`,
    /// or from `int.and(unit).and(int)`. If you changed around the order
    /// of filters, while still having them be semantically equivalent, you'd
    /// need to update all your `map`s as well.
    ///
    /// `Product`, `HList`, and `Func` do all the heavy work so that none of
    /// this is a bother to you. What's more, the types are enforced at
    /// compile-time, and tuple flattening is optimized away to nothing by
    /// LLVM.
    fn map<F>(self, fun: F) -> Map<Self, F>
    where
        Self: Sized,
        F: Func<Self::Extract> + Clone,
    {
        Map {
            filter: self,
            callback: fun,
        }
    }


    /// Composes this `Filter` with a function receiving the extracted value.
    ///
    /// The function should return some `IntoFuture` type.
    ///
    /// The `Error` type of the return `Future` needs be a `Rejection`, which
    /// means most futures will need to have their error mapped into one.
    ///
    /// # Example
    ///
    /// ```
    /// use warp::Filter;
    ///
    /// // Validate after `/:id`
    /// warp::path::param().and_then(|id: u64| {
    ///     if id != 0 {
    ///         Ok(format!("Hello #{}", id))
    ///     } else {
    ///         Err(warp::reject::not_found())
    ///     }
    /// });
    /// ```
    fn and_then<F>(self, fun: F) -> AndThen<Self, F>
    where
        Self: Sized,
        F: Func<Self::Extract> + Clone,
        F::Output: IntoFuture + Send,
        <F::Output as IntoFuture>::Error: CombineRejection<Self::Error>,
        <F::Output as IntoFuture>::Future: Send,
    {
        AndThen {
            filter: self,
            callback: fun,
        }
    }

    /// Compose this `Filter` with a function receiving an error.
    ///
    /// The function should return some `IntoFuture` type yielding the
    /// same item and error types.
    fn or_else<F>(self, fun: F) -> OrElse<Self, F>
    where
        Self: Sized,
        F: Func<Self::Error>,
        F::Output: IntoFuture<Item=Self::Extract, Error=Self::Error> + Send,
        <F::Output as IntoFuture>::Future: Send,
    {
        OrElse {
            filter: self,
            callback: fun,
        }
    }

    /// Compose this `Filter` with a function receiving an error and
    /// returning a *new* type, instead of the *same* type.
    ///
    /// This is useful for "customizing" rejections into new response types.
    /// See also the [errors example][ex].
    ///
    /// [ex]: https://github.com/seanmonstar/warp/blob/master/examples/errors.rs
    fn recover<F>(self, fun: F) -> Recover<Self, F>
    where
        Self: Sized,
        F: Func<Self::Error>,
        F::Output: IntoFuture<Error=Self::Error> + Send,
        <F::Output as IntoFuture>::Future: Send,
    {
        Recover {
            filter: self,
            callback: fun,
        }
    }

    /// Unifies the extracted value of `Filter`s composed with `or`.
    ///
    /// When a `Filter` extracts some `Either<T, T>`, where both sides
    /// are the same type, this combinator can be used to grab the
    /// inner value, regardless of which side of `Either` it was. This
    /// is useful for values that could be extracted from multiple parts
    /// of a request, and the exact place isn't important.
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::net::SocketAddr;
    /// use warp::Filter;
    ///
    /// let client_ip = warp::header("x-real-ip")
    ///     .or(warp::header("x-forwarded-for"))
    ///     .unify()
    ///     .map(|ip: SocketAddr| {
    ///         // Get the IP from either header,
    ///         // and unify into the inner type.
    ///     });
    /// ```
    fn unify<T>(self) -> Unify<Self>
    where
        Self: Filter<Extract=(Either<T, T>,)> + Sized,
        T: Tuple,
    {
        Unify {
            filter: self,
        }
    }

    /// Wraps the current filter with some wrapper.
    ///
    /// The wrapper may do some preparation work before starting this filter,
    /// and may do post-processing after the filter completes.
    ///
    /// # Example
    ///
    /// ```
    /// use warp::Filter;
    ///
    /// let route = warp::any()
    ///     .map(warp::reply);
    ///
    /// // Wrap the route with a log wrapper.
    /// let route = route.with(warp::log("example"));
    /// ```
    fn with<W>(self, wrapper: W) -> W::Wrapped
    where
        Self: Sized,
        W: Wrap<Self>,
    {
        wrapper.wrap(self)
    }

    /// Boxes this filter into a trait object, making it easier to name the type.
    ///
    /// # Example
    ///
    /// ```
    /// use warp::Filter;
    ///
    /// fn impl_reply() -> warp::filters::BoxedFilter<(impl warp::Reply,)> {
    ///     warp::any()
    ///         .map(warp::reply)
    ///         .boxed()
    /// }
    ///
    /// fn named_i32() -> warp::filters::BoxedFilter<(i32,)> {
    ///     warp::path::param::<i32>()
    ///         .boxed()
    /// }
    ///
    /// fn named_and() -> warp::filters::BoxedFilter<(i32, String)> {
    ///     warp::path::param::<i32>()
    ///         .and(warp::header::<String>("host"))
    ///         .boxed()
    /// }
    /// ```
    fn boxed(self) -> BoxedFilter<Self::Extract>
    where
        Self: Sized + Send + Sync + 'static,
        Self::Extract: Send,
        Rejection: From<Self::Error>,
    {
        BoxedFilter::new(self)
    }
}

impl<T: FilterBase> Filter for T {}

pub trait FilterClone: Filter + Clone {}

impl<T: Filter + Clone> FilterClone for T {}

fn _assert_object_safe() {
    fn _assert(_f: &Filter<
        Extract=(),
        Error=(),
        Future=future::FutureResult<(), ()>
    >) {}
}

// ===== FilterFn =====

pub(crate) fn filter_fn<F, U>(func: F) -> FilterFn<F>
where
    F: Fn(&mut Route) -> U,
    U: IntoFuture,
    U::Item: Tuple,
    U::Error: Reject,
{
    FilterFn {
        func,
    }
}

pub(crate) fn filter_fn_one<F, U>(func: F)
    -> FilterFn<impl Fn(&mut Route) -> future::Map<U::Future, fn(U::Item) -> (U::Item,)> + Copy>
where
    F: Fn(&mut Route) -> U + Copy,
    U: IntoFuture,
    U::Error: Reject,
{
    filter_fn(move |route| {
        func(route)
            .into_future()
            .map(tup_one as _)
    })
}

fn tup_one<T>(item: T) -> (T,) {
    (item,)
}

#[derive(Copy, Clone)]
#[allow(missing_debug_implementations)]
pub(crate) struct FilterFn<F> {
    // TODO: could include a `debug_str: &'static str` to be used in Debug impl
    func: F,
}

impl<F, U> FilterBase for FilterFn<F>
where
    F: Fn(&mut Route) -> U,
    U: IntoFuture,
    U::Future: Send,
    U::Item: Tuple,
    U::Error: Reject,
{
    type Extract = U::Item;
    type Error = U::Error;
    type Future = U::Future;

    #[inline]
    fn filter(&self) -> Self::Future {
        route::with(|route| {
            (self.func)(route).into_future()
        })
    }
}