1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! A program that is run on the device.
//!
//! In Vulkan, shaders are grouped in *shader modules*. Each shader module is built from SPIR-V
//! code and can contain one or more entry points. Note that for the moment the official
//! GLSL-to-SPIR-V compiler does not support multiple entry points.
//!
//! The vulkano library can parse and introspect SPIR-V code, but it does not fully validate the
//! code. You are encouraged to use the `vulkano-shaders` crate that will generate Rust code that
//! wraps around vulkano's shaders API.

use crate::{
    descriptor_set::layout::DescriptorType,
    device::{Device, DeviceOwned},
    format::{Format, NumericType},
    image::view::ImageViewType,
    macros::{vulkan_bitflags, vulkan_enum},
    pipeline::{graphics::input_assembly::PrimitiveTopology, layout::PushConstantRange},
    shader::spirv::{Capability, Spirv, SpirvError},
    sync::PipelineStages,
    DeviceSize, OomError, Version, VulkanError, VulkanObject,
};
use ahash::{HashMap, HashSet};
use std::{
    borrow::Cow,
    error::Error,
    ffi::{CStr, CString},
    fmt::{Display, Error as FmtError, Formatter},
    mem,
    mem::MaybeUninit,
    num::NonZeroU64,
    ptr,
    sync::Arc,
};

pub mod reflect;
pub mod spirv;

use spirv::ExecutionModel;

// Generated by build.rs
include!(concat!(env!("OUT_DIR"), "/spirv_reqs.rs"));

/// Contains SPIR-V code with one or more entry points.
#[derive(Debug)]
pub struct ShaderModule {
    handle: ash::vk::ShaderModule,
    device: Arc<Device>,
    id: NonZeroU64,
    entry_points: HashMap<String, HashMap<ExecutionModel, EntryPointInfo>>,
}

impl ShaderModule {
    /// Builds a new shader module from SPIR-V 32-bit words. The shader code is parsed and the
    /// necessary information is extracted from it.
    ///
    /// # Safety
    ///
    /// - The SPIR-V code is not validated beyond the minimum needed to extract the information.
    #[inline]
    pub unsafe fn from_words(
        device: Arc<Device>,
        words: &[u32],
    ) -> Result<Arc<ShaderModule>, ShaderCreationError> {
        let spirv = Spirv::new(words)?;

        Self::from_words_with_data(
            device,
            words,
            spirv.version(),
            reflect::spirv_capabilities(&spirv),
            reflect::spirv_extensions(&spirv),
            reflect::entry_points(&spirv),
        )
    }

    /// As `from_words`, but takes a slice of bytes.
    ///
    /// # Panics
    ///
    /// - Panics if the length of `bytes` is not a multiple of 4.
    #[inline]
    pub unsafe fn from_bytes(
        device: Arc<Device>,
        bytes: &[u8],
    ) -> Result<Arc<ShaderModule>, ShaderCreationError> {
        assert!((bytes.len() % 4) == 0);

        Self::from_words(
            device,
            std::slice::from_raw_parts(
                bytes.as_ptr() as *const _,
                bytes.len() / mem::size_of::<u32>(),
            ),
        )
    }

    /// As `from_words`, but does not parse the code. Instead, you must provide the needed
    /// information yourself. This can be useful if you've already done parsing yourself and
    /// want to prevent Vulkano from doing it a second time.
    ///
    /// # Safety
    ///
    /// - The SPIR-V code is not validated at all.
    /// - The provided information must match what the SPIR-V code contains.
    pub unsafe fn from_words_with_data<'a>(
        device: Arc<Device>,
        words: &[u32],
        spirv_version: Version,
        spirv_capabilities: impl IntoIterator<Item = &'a Capability>,
        spirv_extensions: impl IntoIterator<Item = &'a str>,
        entry_points: impl IntoIterator<Item = (String, ExecutionModel, EntryPointInfo)>,
    ) -> Result<Arc<ShaderModule>, ShaderCreationError> {
        if let Err(reason) = check_spirv_version(&device, spirv_version) {
            return Err(ShaderCreationError::SpirvVersionNotSupported {
                version: spirv_version,
                reason,
            });
        }

        for &capability in spirv_capabilities {
            if let Err(reason) = check_spirv_capability(&device, capability) {
                return Err(ShaderCreationError::SpirvCapabilityNotSupported {
                    capability,
                    reason,
                });
            }
        }

        for extension in spirv_extensions {
            if let Err(reason) = check_spirv_extension(&device, extension) {
                return Err(ShaderCreationError::SpirvExtensionNotSupported {
                    extension: extension.to_owned(),
                    reason,
                });
            }
        }

        let handle = {
            let infos = ash::vk::ShaderModuleCreateInfo {
                flags: ash::vk::ShaderModuleCreateFlags::empty(),
                code_size: words.len() * mem::size_of::<u32>(),
                p_code: words.as_ptr(),
                ..Default::default()
            };

            let fns = device.fns();
            let mut output = MaybeUninit::uninit();
            (fns.v1_0.create_shader_module)(
                device.handle(),
                &infos,
                ptr::null(),
                output.as_mut_ptr(),
            )
            .result()
            .map_err(VulkanError::from)?;
            output.assume_init()
        };

        let entries = entry_points.into_iter().collect::<Vec<_>>();
        let entry_points = entries
            .iter()
            .map(|(name, _, _)| name)
            .collect::<HashSet<_>>()
            .iter()
            .map(|name| {
                (
                    (*name).clone(),
                    entries
                        .iter()
                        .filter_map(|(entry_name, entry_model, info)| {
                            if &entry_name == name {
                                Some((*entry_model, info.clone()))
                            } else {
                                None
                            }
                        })
                        .collect::<HashMap<_, _>>(),
                )
            })
            .collect();

        Ok(Arc::new(ShaderModule {
            handle,
            device,
            id: Self::next_id(),
            entry_points,
        }))
    }

    /// As `from_words_with_data`, but takes a slice of bytes.
    ///
    /// # Panics
    ///
    /// - Panics if the length of `bytes` is not a multiple of 4.
    pub unsafe fn from_bytes_with_data<'a>(
        device: Arc<Device>,
        bytes: &[u8],
        spirv_version: Version,
        spirv_capabilities: impl IntoIterator<Item = &'a Capability>,
        spirv_extensions: impl IntoIterator<Item = &'a str>,
        entry_points: impl IntoIterator<Item = (String, ExecutionModel, EntryPointInfo)>,
    ) -> Result<Arc<ShaderModule>, ShaderCreationError> {
        assert!((bytes.len() % 4) == 0);

        Self::from_words_with_data(
            device,
            std::slice::from_raw_parts(
                bytes.as_ptr() as *const _,
                bytes.len() / mem::size_of::<u32>(),
            ),
            spirv_version,
            spirv_capabilities,
            spirv_extensions,
            entry_points,
        )
    }

    /// Returns information about the entry point with the provided name. Returns `None` if no entry
    /// point with that name exists in the shader module or if multiple entry points with the same
    /// name exist.
    #[inline]
    pub fn entry_point<'a>(&'a self, name: &str) -> Option<EntryPoint<'a>> {
        self.entry_points.get(name).and_then(|infos| {
            if infos.len() == 1 {
                infos.iter().next().map(|(_, info)| EntryPoint {
                    module: self,
                    name: CString::new(name).unwrap(),
                    info,
                })
            } else {
                None
            }
        })
    }

    /// Returns information about the entry point with the provided name and execution model.
    /// Returns `None` if no entry and execution model exists in the shader module.
    #[inline]
    pub fn entry_point_with_execution<'a>(
        &'a self,
        name: &str,
        execution: ExecutionModel,
    ) -> Option<EntryPoint<'a>> {
        self.entry_points.get(name).and_then(|infos| {
            infos.get(&execution).map(|info| EntryPoint {
                module: self,
                name: CString::new(name).unwrap(),
                info,
            })
        })
    }
}

impl Drop for ShaderModule {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            let fns = self.device.fns();
            (fns.v1_0.destroy_shader_module)(self.device.handle(), self.handle, ptr::null());
        }
    }
}

unsafe impl VulkanObject for ShaderModule {
    type Handle = ash::vk::ShaderModule;

    #[inline]
    fn handle(&self) -> Self::Handle {
        self.handle
    }
}

unsafe impl DeviceOwned for ShaderModule {
    #[inline]
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

crate::impl_id_counter!(ShaderModule);

/// Error that can happen when creating a new shader module.
#[derive(Clone, Debug)]
pub enum ShaderCreationError {
    OomError(OomError),
    SpirvCapabilityNotSupported {
        capability: Capability,
        reason: ShaderSupportError,
    },
    SpirvError(SpirvError),
    SpirvExtensionNotSupported {
        extension: String,
        reason: ShaderSupportError,
    },
    SpirvVersionNotSupported {
        version: Version,
        reason: ShaderSupportError,
    },
}

impl Error for ShaderCreationError {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        match self {
            Self::OomError(err) => Some(err),
            Self::SpirvCapabilityNotSupported { reason, .. } => Some(reason),
            Self::SpirvError(err) => Some(err),
            Self::SpirvExtensionNotSupported { reason, .. } => Some(reason),
            Self::SpirvVersionNotSupported { reason, .. } => Some(reason),
        }
    }
}

impl Display for ShaderCreationError {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        match self {
            Self::OomError(_) => write!(f, "not enough memory available"),
            Self::SpirvCapabilityNotSupported { capability, .. } => write!(
                f,
                "the SPIR-V capability {:?} enabled by the shader is not supported by the device",
                capability,
            ),
            Self::SpirvError(_) => write!(f, "the SPIR-V module could not be read"),
            Self::SpirvExtensionNotSupported { extension, .. } => write!(
                f,
                "the SPIR-V extension {} enabled by the shader is not supported by the device",
                extension,
            ),
            Self::SpirvVersionNotSupported { version, .. } => write!(
                f,
                "the shader uses SPIR-V version {}.{}, which is not supported by the device",
                version.major, version.minor,
            ),
        }
    }
}

impl From<VulkanError> for ShaderCreationError {
    fn from(err: VulkanError) -> Self {
        Self::OomError(err.into())
    }
}

impl From<SpirvError> for ShaderCreationError {
    fn from(err: SpirvError) -> Self {
        Self::SpirvError(err)
    }
}

/// Error that can happen when checking whether a shader is supported by a device.
#[derive(Clone, Copy, Debug)]
pub enum ShaderSupportError {
    NotSupportedByVulkan,
    RequirementsNotMet(&'static [&'static str]),
}

impl Error for ShaderSupportError {}

impl Display for ShaderSupportError {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        match self {
            Self::NotSupportedByVulkan => write!(f, "not supported by Vulkan"),
            Self::RequirementsNotMet(requirements) => write!(
                f,
                "at least one of the following must be available/enabled on the device: {}",
                requirements.join(", "),
            ),
        }
    }
}

/// The information associated with a single entry point in a shader.
#[derive(Clone, Debug)]
pub struct EntryPointInfo {
    pub execution: ShaderExecution,
    pub descriptor_requirements: HashMap<(u32, u32), DescriptorRequirements>,
    pub push_constant_requirements: Option<PushConstantRange>,
    pub specialization_constant_requirements: HashMap<u32, SpecializationConstantRequirements>,
    pub input_interface: ShaderInterface,
    pub output_interface: ShaderInterface,
}

/// Represents a shader entry point in a shader module.
///
/// Can be obtained by calling [`entry_point`](ShaderModule::entry_point) on the shader module.
#[derive(Clone, Debug)]
pub struct EntryPoint<'a> {
    module: &'a ShaderModule,
    name: CString,
    info: &'a EntryPointInfo,
}

impl<'a> EntryPoint<'a> {
    /// Returns the module this entry point comes from.
    #[inline]
    pub fn module(&self) -> &'a ShaderModule {
        self.module
    }

    /// Returns the name of the entry point.
    #[inline]
    pub fn name(&self) -> &CStr {
        &self.name
    }

    /// Returns the execution model of the shader.
    #[inline]
    pub fn execution(&self) -> &ShaderExecution {
        &self.info.execution
    }

    /// Returns the descriptor requirements.
    #[inline]
    pub fn descriptor_requirements(
        &self,
    ) -> impl ExactSizeIterator<Item = ((u32, u32), &DescriptorRequirements)> {
        self.info
            .descriptor_requirements
            .iter()
            .map(|(k, v)| (*k, v))
    }

    /// Returns the push constant requirements.
    #[inline]
    pub fn push_constant_requirements(&self) -> Option<&PushConstantRange> {
        self.info.push_constant_requirements.as_ref()
    }

    /// Returns the specialization constant requirements.
    #[inline]
    pub fn specialization_constant_requirements(
        &self,
    ) -> impl ExactSizeIterator<Item = (u32, &SpecializationConstantRequirements)> {
        self.info
            .specialization_constant_requirements
            .iter()
            .map(|(k, v)| (*k, v))
    }

    /// Returns the input attributes used by the shader stage.
    #[inline]
    pub fn input_interface(&self) -> &ShaderInterface {
        &self.info.input_interface
    }

    /// Returns the output attributes used by the shader stage.
    #[inline]
    pub fn output_interface(&self) -> &ShaderInterface {
        &self.info.output_interface
    }
}

/// The mode in which a shader executes. This includes both information about the shader type/stage,
/// and additional data relevant to particular shader types.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ShaderExecution {
    Vertex,
    TessellationControl,
    TessellationEvaluation,
    Geometry(GeometryShaderExecution),
    Fragment,
    Compute,
    RayGeneration,
    AnyHit,
    ClosestHit,
    Miss,
    Intersection,
    Callable,
}

/*#[derive(Clone, Copy, Debug)]
pub struct TessellationShaderExecution {
    pub num_output_vertices: u32,
    pub point_mode: bool,
    pub subdivision: TessellationShaderSubdivision,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TessellationShaderSubdivision {
    Triangles,
    Quads,
    Isolines,
}*/

/// The mode in which a geometry shader executes.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct GeometryShaderExecution {
    pub input: GeometryShaderInput,
    /*pub max_output_vertices: u32,
    pub num_invocations: u32,
    pub output: GeometryShaderOutput,*/
}

/// The input primitive type that is expected by a geometry shader.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum GeometryShaderInput {
    Points,
    Lines,
    LinesWithAdjacency,
    Triangles,
    TrianglesWithAdjacency,
}

impl GeometryShaderInput {
    /// Returns true if the given primitive topology can be used as input for this geometry shader.
    #[inline]
    pub fn is_compatible_with(&self, topology: PrimitiveTopology) -> bool {
        match self {
            Self::Points => matches!(topology, PrimitiveTopology::PointList),
            Self::Lines => matches!(
                topology,
                PrimitiveTopology::LineList | PrimitiveTopology::LineStrip
            ),
            Self::LinesWithAdjacency => matches!(
                topology,
                PrimitiveTopology::LineListWithAdjacency
                    | PrimitiveTopology::LineStripWithAdjacency
            ),
            Self::Triangles => matches!(
                topology,
                PrimitiveTopology::TriangleList
                    | PrimitiveTopology::TriangleStrip
                    | PrimitiveTopology::TriangleFan,
            ),
            Self::TrianglesWithAdjacency => matches!(
                topology,
                PrimitiveTopology::TriangleListWithAdjacency
                    | PrimitiveTopology::TriangleStripWithAdjacency,
            ),
        }
    }
}

/*#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum GeometryShaderOutput {
    Points,
    LineStrip,
    TriangleStrip,
}*/

/// The requirements imposed by a shader on a descriptor within a descriptor set layout, and on any
/// resource that is bound to that descriptor.
#[derive(Clone, Debug, Default)]
pub struct DescriptorRequirements {
    /// The descriptor types that are allowed.
    pub descriptor_types: Vec<DescriptorType>,

    /// The number of descriptors (array elements) that the shader requires. The descriptor set
    /// layout can declare more than this, but never less.
    ///
    /// `None` means that the shader declares this as a runtime-sized array, and could potentially
    /// access every array element provided in the descriptor set.
    pub descriptor_count: Option<u32>,

    /// The image format that is required for image views bound to this descriptor. If this is
    /// `None`, then any image format is allowed.
    pub image_format: Option<Format>,

    /// Whether image views bound to this descriptor must have multisampling enabled or disabled.
    pub image_multisampled: bool,

    /// The base scalar type required for the format of image views bound to this descriptor.
    /// This is `None` for non-image descriptors.
    pub image_scalar_type: Option<ShaderScalarType>,

    /// The view type that is required for image views bound to this descriptor.
    /// This is `None` for non-image descriptors.
    pub image_view_type: Option<ImageViewType>,

    /// For sampler bindings, the descriptor indices that require a depth comparison sampler.
    pub sampler_compare: HashSet<u32>,

    /// For sampler bindings, the descriptor indices that perform sampling operations that are not
    /// permitted with unnormalized coordinates. This includes sampling with `ImplicitLod`,
    /// `Dref` or `Proj` SPIR-V instructions or with an LOD bias or offset.
    pub sampler_no_unnormalized_coordinates: HashSet<u32>,

    /// For sampler bindings, the descriptor indices that perform sampling operations that are not
    /// permitted with a sampler YCbCr conversion. This includes sampling with `Gather` SPIR-V
    /// instructions or with an offset.
    pub sampler_no_ycbcr_conversion: HashSet<u32>,

    /// For sampler bindings, the sampled image descriptors that are used in combination with each
    /// sampler descriptor index.
    pub sampler_with_images: HashMap<u32, HashSet<DescriptorIdentifier>>,

    /// The shader stages that the descriptor must be declared for.
    pub stages: ShaderStages,

    /// For storage image bindings, the descriptor indices that atomic operations are used with.
    pub storage_image_atomic: HashSet<u32>,

    /// For storage images and storage texel buffers, the descriptor indices that perform read
    /// operations on the bound resource.
    pub storage_read: HashSet<u32>,

    /// For storage buffers, storage images and storage texel buffers, the descriptor indices that
    /// perform write operations on the bound resource.
    pub storage_write: HashSet<u32>,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct DescriptorIdentifier {
    pub set: u32,
    pub binding: u32,
    pub index: u32,
}

impl DescriptorRequirements {
    /// Produces the intersection of two descriptor requirements, so that the requirements of both
    /// are satisfied. An error is returned if the requirements conflict.
    #[inline]
    pub fn intersection(&self, other: &Self) -> Result<Self, DescriptorRequirementsIncompatible> {
        let descriptor_types: Vec<_> = self
            .descriptor_types
            .iter()
            .copied()
            .filter(|ty| other.descriptor_types.contains(ty))
            .collect();

        if descriptor_types.is_empty() {
            return Err(DescriptorRequirementsIncompatible::DescriptorType);
        }

        if let (Some(first), Some(second)) = (self.image_format, other.image_format) {
            if first != second {
                return Err(DescriptorRequirementsIncompatible::ImageFormat);
            }
        }

        if let (Some(first), Some(second)) = (self.image_scalar_type, other.image_scalar_type) {
            if first != second {
                return Err(DescriptorRequirementsIncompatible::ImageScalarType);
            }
        }

        if let (Some(first), Some(second)) = (self.image_view_type, other.image_view_type) {
            if first != second {
                return Err(DescriptorRequirementsIncompatible::ImageViewType);
            }
        }

        if self.image_multisampled != other.image_multisampled {
            return Err(DescriptorRequirementsIncompatible::ImageMultisampled);
        }

        let sampler_with_images = {
            let mut result = self.sampler_with_images.clone();

            for (&index, other_identifiers) in &other.sampler_with_images {
                result.entry(index).or_default().extend(other_identifiers);
            }

            result
        };

        Ok(Self {
            descriptor_types,
            descriptor_count: self.descriptor_count.max(other.descriptor_count),
            image_format: self.image_format.or(other.image_format),
            image_multisampled: self.image_multisampled,
            image_scalar_type: self.image_scalar_type.or(other.image_scalar_type),
            image_view_type: self.image_view_type.or(other.image_view_type),
            sampler_compare: &self.sampler_compare | &other.sampler_compare,
            sampler_no_unnormalized_coordinates: &self.sampler_no_unnormalized_coordinates
                | &other.sampler_no_unnormalized_coordinates,
            sampler_no_ycbcr_conversion: &self.sampler_no_ycbcr_conversion
                | &other.sampler_no_ycbcr_conversion,
            sampler_with_images,
            stages: self.stages | other.stages,
            storage_image_atomic: &self.storage_image_atomic | &other.storage_image_atomic,
            storage_read: &self.storage_read | &other.storage_read,
            storage_write: &self.storage_write | &other.storage_write,
        })
    }
}

/// An error that can be returned when trying to create the intersection of two
/// `DescriptorRequirements` values.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DescriptorRequirementsIncompatible {
    /// The allowed descriptor types of the descriptors do not overlap.
    DescriptorType,
    /// The descriptors require different formats.
    ImageFormat,
    /// The descriptors require different scalar types.
    ImageScalarType,
    /// The multisampling requirements of the descriptors differ.
    ImageMultisampled,
    /// The descriptors require different image view types.
    ImageViewType,
}

impl Error for DescriptorRequirementsIncompatible {}

impl Display for DescriptorRequirementsIncompatible {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        match self {
            DescriptorRequirementsIncompatible::DescriptorType => write!(
                f,
                "the allowed descriptor types of the two descriptors do not overlap",
            ),
            DescriptorRequirementsIncompatible::ImageFormat => {
                write!(f, "the descriptors require different formats",)
            }
            DescriptorRequirementsIncompatible::ImageMultisampled => write!(
                f,
                "the multisampling requirements of the descriptors differ",
            ),
            DescriptorRequirementsIncompatible::ImageScalarType => {
                write!(f, "the descriptors require different scalar types",)
            }
            DescriptorRequirementsIncompatible::ImageViewType => {
                write!(f, "the descriptors require different image view types",)
            }
        }
    }
}

/// The requirements imposed by a shader on a specialization constant.
#[derive(Clone, Copy, Debug)]
pub struct SpecializationConstantRequirements {
    pub size: DeviceSize,
}

/// Trait for types that contain specialization data for shaders.
///
/// Shader modules can contain what is called *specialization constants*. They are the same as
/// constants except that their values can be defined when you create a compute pipeline or a
/// graphics pipeline. Doing so is done by passing a type that implements the
/// `SpecializationConstants` trait and that stores the values in question. The `descriptors()`
/// method of this trait indicates how to grab them.
///
/// Boolean specialization constants must be stored as 32bits integers, where `0` means `false` and
/// any non-zero value means `true`. Integer and floating-point specialization constants are
/// stored as their Rust equivalent.
///
/// This trait is implemented on `()` for shaders that don't have any specialization constant.
///
/// # Examples
///
/// ```rust
/// use vulkano::shader::SpecializationConstants;
/// use vulkano::shader::SpecializationMapEntry;
///
/// #[repr(C)]      // `#[repr(C)]` guarantees that the struct has a specific layout
/// struct MySpecConstants {
///     my_integer_constant: i32,
///     a_boolean: u32,
///     floating_point: f32,
/// }
///
/// unsafe impl SpecializationConstants for MySpecConstants {
///     fn descriptors() -> &'static [SpecializationMapEntry] {
///         static DESCRIPTORS: [SpecializationMapEntry; 3] = [
///             SpecializationMapEntry {
///                 constant_id: 0,
///                 offset: 0,
///                 size: 4,
///             },
///             SpecializationMapEntry {
///                 constant_id: 1,
///                 offset: 4,
///                 size: 4,
///             },
///             SpecializationMapEntry {
///                 constant_id: 2,
///                 offset: 8,
///                 size: 4,
///             },
///         ];
///
///         &DESCRIPTORS
///     }
/// }
/// ```
///
/// # Safety
///
/// - The `SpecializationMapEntry` returned must contain valid offsets and sizes.
/// - The size of each `SpecializationMapEntry` must match the size of the corresponding constant
///   (`4` for booleans).
pub unsafe trait SpecializationConstants {
    /// Returns descriptors of the struct's layout.
    fn descriptors() -> &'static [SpecializationMapEntry];
}

unsafe impl SpecializationConstants for () {
    #[inline]
    fn descriptors() -> &'static [SpecializationMapEntry] {
        &[]
    }
}

/// Describes an individual constant to set in the shader. Also a field in the struct.
// Implementation note: has the same memory representation as a `VkSpecializationMapEntry`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(C)]
pub struct SpecializationMapEntry {
    /// Identifier of the constant in the shader that corresponds to this field.
    ///
    /// For SPIR-V, this must be the value of the `SpecId` decoration applied to the specialization
    /// constant.
    /// For GLSL, this must be the value of `N` in the `layout(constant_id = N)` attribute applied
    /// to a constant.
    pub constant_id: u32,

    /// Offset within the struct where the data can be found.
    pub offset: u32,

    /// Size of the data in bytes. Must match the size of the constant (`4` for booleans).
    pub size: usize,
}

impl From<SpecializationMapEntry> for ash::vk::SpecializationMapEntry {
    #[inline]
    fn from(val: SpecializationMapEntry) -> Self {
        Self {
            constant_id: val.constant_id,
            offset: val.offset,
            size: val.size,
        }
    }
}

/// Type that contains the definition of an interface between two shader stages, or between
/// the outside and a shader stage.
#[derive(Clone, Debug)]
pub struct ShaderInterface {
    elements: Vec<ShaderInterfaceEntry>,
}

impl ShaderInterface {
    /// Constructs a new `ShaderInterface`.
    ///
    /// # Safety
    ///
    /// - Must only provide one entry per location.
    /// - The format of each element must not be larger than 128 bits.
    // TODO: 4x64 bit formats are possible, but they require special handling.
    // TODO: could this be made safe?
    #[inline]
    pub unsafe fn new_unchecked(elements: Vec<ShaderInterfaceEntry>) -> ShaderInterface {
        ShaderInterface { elements }
    }

    /// Creates a description of an empty shader interface.
    #[inline]
    pub const fn empty() -> ShaderInterface {
        ShaderInterface {
            elements: Vec::new(),
        }
    }

    /// Returns a slice containing the elements of the interface.
    #[inline]
    pub fn elements(&self) -> &[ShaderInterfaceEntry] {
        self.elements.as_ref()
    }

    /// Checks whether the interface is potentially compatible with another one.
    ///
    /// Returns `Ok` if the two interfaces are compatible.
    #[inline]
    pub fn matches(&self, other: &ShaderInterface) -> Result<(), ShaderInterfaceMismatchError> {
        if self.elements().len() != other.elements().len() {
            return Err(ShaderInterfaceMismatchError::ElementsCountMismatch {
                self_elements: self.elements().len() as u32,
                other_elements: other.elements().len() as u32,
            });
        }

        for a in self.elements() {
            let location_range = a.location..a.location + a.ty.num_locations();
            for loc in location_range {
                let b = match other
                    .elements()
                    .iter()
                    .find(|e| loc >= e.location && loc < e.location + e.ty.num_locations())
                {
                    None => {
                        return Err(ShaderInterfaceMismatchError::MissingElement { location: loc })
                    }
                    Some(b) => b,
                };

                if a.ty != b.ty {
                    return Err(ShaderInterfaceMismatchError::TypeMismatch {
                        location: loc,
                        self_ty: a.ty,
                        other_ty: b.ty,
                    });
                }

                // TODO: enforce this?
                /*match (a.name, b.name) {
                    (Some(ref an), Some(ref bn)) => if an != bn { return false },
                    _ => ()
                };*/
            }
        }

        // Note: since we check that the number of elements is the same, we don't need to iterate
        // over b's elements.

        Ok(())
    }
}

/// Entry of a shader interface definition.
#[derive(Debug, Clone)]
pub struct ShaderInterfaceEntry {
    /// The location slot that the variable starts at.
    pub location: u32,

    /// The component slot that the variable starts at. Must be in the range 0..=3.
    pub component: u32,

    /// Name of the element, or `None` if the name is unknown.
    pub name: Option<Cow<'static, str>>,

    /// The type of the variable.
    pub ty: ShaderInterfaceEntryType,
}

/// The type of a variable in a shader interface.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ShaderInterfaceEntryType {
    /// The base numeric type.
    pub base_type: ShaderScalarType,

    /// The number of vector components. Must be in the range 1..=4.
    pub num_components: u32,

    /// The number of array elements or matrix columns.
    pub num_elements: u32,

    /// Whether the base type is 64 bits wide. If true, each item of the base type takes up two
    /// component slots instead of one.
    pub is_64bit: bool,
}

impl ShaderInterfaceEntryType {
    pub(crate) fn to_format(&self) -> Format {
        assert!(!self.is_64bit); // TODO: implement
        match self.base_type {
            ShaderScalarType::Float => match self.num_components {
                1 => Format::R32_SFLOAT,
                2 => Format::R32G32_SFLOAT,
                3 => Format::R32G32B32_SFLOAT,
                4 => Format::R32G32B32A32_SFLOAT,
                _ => unreachable!(),
            },
            ShaderScalarType::Sint => match self.num_components {
                1 => Format::R32_SINT,
                2 => Format::R32G32_SINT,
                3 => Format::R32G32B32_SINT,
                4 => Format::R32G32B32A32_SINT,
                _ => unreachable!(),
            },
            ShaderScalarType::Uint => match self.num_components {
                1 => Format::R32_UINT,
                2 => Format::R32G32_UINT,
                3 => Format::R32G32B32_UINT,
                4 => Format::R32G32B32A32_UINT,
                _ => unreachable!(),
            },
        }
    }

    pub(crate) fn num_locations(&self) -> u32 {
        assert!(!self.is_64bit); // TODO: implement
        self.num_elements
    }
}

/// The numeric base type of a shader variable.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum ShaderScalarType {
    Float,
    Sint,
    Uint,
}

// https://registry.khronos.org/vulkan/specs/1.3-extensions/html/chap43.html#formats-numericformat
impl From<NumericType> for ShaderScalarType {
    #[inline]
    fn from(val: NumericType) -> Self {
        match val {
            NumericType::SFLOAT => Self::Float,
            NumericType::UFLOAT => Self::Float,
            NumericType::SINT => Self::Sint,
            NumericType::UINT => Self::Uint,
            NumericType::SNORM => Self::Float,
            NumericType::UNORM => Self::Float,
            NumericType::SSCALED => Self::Float,
            NumericType::USCALED => Self::Float,
            NumericType::SRGB => Self::Float,
        }
    }
}

/// Error that can happen when the interface mismatches between two shader stages.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ShaderInterfaceMismatchError {
    /// The number of elements is not the same between the two shader interfaces.
    ElementsCountMismatch {
        /// Number of elements in the first interface.
        self_elements: u32,
        /// Number of elements in the second interface.
        other_elements: u32,
    },

    /// An element is missing from one of the interfaces.
    MissingElement {
        /// Location of the missing element.
        location: u32,
    },

    /// The type of an element does not match.
    TypeMismatch {
        /// Location of the element that mismatches.
        location: u32,
        /// Type in the first interface.
        self_ty: ShaderInterfaceEntryType,
        /// Type in the second interface.
        other_ty: ShaderInterfaceEntryType,
    },
}

impl Error for ShaderInterfaceMismatchError {}

impl Display for ShaderInterfaceMismatchError {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        write!(
            f,
            "{}",
            match self {
                ShaderInterfaceMismatchError::ElementsCountMismatch { .. } => {
                    "the number of elements mismatches"
                }
                ShaderInterfaceMismatchError::MissingElement { .. } => "an element is missing",
                ShaderInterfaceMismatchError::TypeMismatch { .. } => {
                    "the type of an element does not match"
                }
            }
        )
    }
}

vulkan_enum! {
    /// A single shader stage.
    #[non_exhaustive]
    ShaderStage = ShaderStageFlags(u32);

    // TODO: document
    Vertex = VERTEX,

    // TODO: document
    TessellationControl = TESSELLATION_CONTROL,

    // TODO: document
    TessellationEvaluation = TESSELLATION_EVALUATION,

    // TODO: document
    Geometry = GEOMETRY,

    // TODO: document
    Fragment = FRAGMENT,

    // TODO: document
    Compute = COMPUTE,

    // TODO: document
    Raygen = RAYGEN_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    AnyHit = ANY_HIT_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    ClosestHit = CLOSEST_HIT_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    Miss = MISS_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    Intersection = INTERSECTION_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    Callable = CALLABLE_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    /*
    // TODO: document
    Task = TASK_NV {
        device_extensions: [nv_mesh_shader],
    },

    // TODO: document
    Mesh = MESH_NV {
        device_extensions: [nv_mesh_shader],
    },

    // TODO: document
    SubpassShading = SUBPASS_SHADING_HUAWEI {
        device_extensions: [huawei_subpass_shading],
    },
     */
}

impl From<ShaderExecution> for ShaderStage {
    #[inline]
    fn from(val: ShaderExecution) -> Self {
        match val {
            ShaderExecution::Vertex => Self::Vertex,
            ShaderExecution::TessellationControl => Self::TessellationControl,
            ShaderExecution::TessellationEvaluation => Self::TessellationEvaluation,
            ShaderExecution::Geometry(_) => Self::Geometry,
            ShaderExecution::Fragment => Self::Fragment,
            ShaderExecution::Compute => Self::Compute,
            ShaderExecution::RayGeneration => Self::Raygen,
            ShaderExecution::AnyHit => Self::AnyHit,
            ShaderExecution::ClosestHit => Self::ClosestHit,
            ShaderExecution::Miss => Self::Miss,
            ShaderExecution::Intersection => Self::Intersection,
            ShaderExecution::Callable => Self::Callable,
        }
    }
}

impl From<ShaderStage> for ShaderStages {
    #[inline]
    fn from(val: ShaderStage) -> Self {
        match val {
            ShaderStage::Vertex => Self {
                vertex: true,
                ..Self::empty()
            },
            ShaderStage::TessellationControl => Self {
                tessellation_control: true,
                ..Self::empty()
            },
            ShaderStage::TessellationEvaluation => Self {
                tessellation_evaluation: true,
                ..Self::empty()
            },
            ShaderStage::Geometry => Self {
                geometry: true,
                ..Self::empty()
            },
            ShaderStage::Fragment => Self {
                fragment: true,
                ..Self::empty()
            },
            ShaderStage::Compute => Self {
                compute: true,
                ..Self::empty()
            },
            ShaderStage::Raygen => Self {
                raygen: true,
                ..Self::empty()
            },
            ShaderStage::AnyHit => Self {
                any_hit: true,
                ..Self::empty()
            },
            ShaderStage::ClosestHit => Self {
                closest_hit: true,
                ..Self::empty()
            },
            ShaderStage::Miss => Self {
                miss: true,
                ..Self::empty()
            },
            ShaderStage::Intersection => Self {
                intersection: true,
                ..Self::empty()
            },
            ShaderStage::Callable => Self {
                callable: true,
                ..Self::empty()
            },
        }
    }
}

vulkan_bitflags! {
    /// A set of shader stages.
    #[non_exhaustive]
    ShaderStages = ShaderStageFlags(u32);

    // TODO: document
    vertex = VERTEX,

    // TODO: document
    tessellation_control = TESSELLATION_CONTROL,

    // TODO: document
    tessellation_evaluation = TESSELLATION_EVALUATION,

    // TODO: document
    geometry = GEOMETRY,

    // TODO: document
    fragment = FRAGMENT,

    // TODO: document
    compute = COMPUTE,

    // TODO: document
    raygen = RAYGEN_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    any_hit = ANY_HIT_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    closest_hit = CLOSEST_HIT_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    miss = MISS_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    intersection = INTERSECTION_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    // TODO: document
    callable = CALLABLE_KHR {
        device_extensions: [khr_ray_tracing_pipeline, nv_ray_tracing],
    },

    /*
    // TODO: document
    task = TASK_NV {
        device_extensions: [nv_mesh_shader],
    },

    // TODO: document
    mesh = MESH_NV {
        device_extensions: [nv_mesh_shader],
    },

    // TODO: document
    subpass_shading = SUBPASS_SHADING_HUAWEI {
        device_extensions: [huawei_subpass_shading],
    },
     */
}

impl ShaderStages {
    /// Creates a `ShaderStages` struct with all graphics stages set to `true`.
    #[inline]
    pub const fn all_graphics() -> ShaderStages {
        ShaderStages {
            vertex: true,
            tessellation_control: true,
            tessellation_evaluation: true,
            geometry: true,
            fragment: true,
            ..ShaderStages::empty()
        }
    }

    /// Creates a `ShaderStages` struct with the compute stage set to `true`.
    #[inline]
    pub const fn compute() -> ShaderStages {
        ShaderStages {
            compute: true,
            ..ShaderStages::empty()
        }
    }
}

impl From<ShaderStages> for PipelineStages {
    #[inline]
    fn from(stages: ShaderStages) -> PipelineStages {
        let ShaderStages {
            vertex,
            tessellation_control,
            tessellation_evaluation,
            geometry,
            fragment,
            compute,
            raygen,
            any_hit,
            closest_hit,
            miss,
            intersection,
            callable,
            _ne: _,
        } = stages;

        PipelineStages {
            vertex_shader: vertex,
            tessellation_control_shader: tessellation_control,
            tessellation_evaluation_shader: tessellation_evaluation,
            geometry_shader: geometry,
            fragment_shader: fragment,
            compute_shader: compute,
            ray_tracing_shader: raygen | any_hit | closest_hit | miss | intersection | callable,
            ..PipelineStages::empty()
        }
    }
}

fn check_spirv_version(device: &Device, mut version: Version) -> Result<(), ShaderSupportError> {
    version.patch = 0; // Ignore the patch version

    match version {
        Version::V1_0 => {}
        Version::V1_1 | Version::V1_2 | Version::V1_3 => {
            if !(device.api_version() >= Version::V1_1) {
                return Err(ShaderSupportError::RequirementsNotMet(&[
                    "Vulkan API version 1.1",
                ]));
            }
        }
        Version::V1_4 => {
            if !(device.api_version() >= Version::V1_2 || device.enabled_extensions().khr_spirv_1_4)
            {
                return Err(ShaderSupportError::RequirementsNotMet(&[
                    "Vulkan API version 1.2",
                    "extension `khr_spirv_1_4`",
                ]));
            }
        }
        Version::V1_5 => {
            if !(device.api_version() >= Version::V1_2) {
                return Err(ShaderSupportError::RequirementsNotMet(&[
                    "Vulkan API version 1.2",
                ]));
            }
        }
        Version::V1_6 => {
            if !(device.api_version() >= Version::V1_3) {
                return Err(ShaderSupportError::RequirementsNotMet(&[
                    "Vulkan API version 1.3",
                ]));
            }
        }
        _ => return Err(ShaderSupportError::NotSupportedByVulkan),
    }
    Ok(())
}