1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use smallvec::SmallVec;
use std::borrow::Cow;
use std::error;
use std::ffi::CStr;
use std::ffi::CString;
use std::fmt;
use std::mem;
use std::ops::Deref;
use std::ptr;
use std::slice;
use std::sync::Arc;

use Error;
use OomError;
use VulkanObject;
use check_errors;
use instance::limits::Limits;
use instance::loader;
use instance::loader::FunctionPointers;
use instance::loader::Loader;
use instance::loader::LoadingError;
use vk;

use instance::{InstanceExtensions, RawInstanceExtensions};
use version::Version;
use features::Features;

/// An instance of a Vulkan context. This is the main object that should be created by an
/// application before everything else.
///
/// See the documentation of [the `instance` module](index.html) for an introduction about
/// Vulkan instances.
///
/// # Extensions and application infos
///
/// Please check the documentation of [the `instance` module](index.html).
///
/// # Layers
///
/// When creating an `Instance`, you have the possibility to pass a list of **layers** that will
/// be activated on the newly-created instance. The list of available layers can be retrieved by
/// calling [the `layers_list` function](fn.layers_list.html).
///
/// A layer is a component that will hook and potentially modify the Vulkan function calls.
/// For example, activating a layer could add a frames-per-second counter on the screen, or it
/// could send information to a debugger that will debug your application.
///
/// > **Note**: From an application's point of view, layers "just exist". In practice, on Windows
/// > and Linux layers can be installed by third party installers or by package managers and can
/// > also be activated by setting the value of the `VK_INSTANCE_LAYERS` environment variable
/// > before starting the program. See the documentation of the official Vulkan loader for these
/// > platforms.
///
/// > **Note**: In practice, the most common use of layers right now is for debugging purposes.
/// > To do so, you are encouraged to set the `VK_INSTANCE_LAYERS` environment variable on Windows
/// > or Linux instead of modifying the source code of your program. For example:
/// > `export VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_api_dump` on Linux if you installed the Vulkan SDK
/// > will print the list of raw Vulkan function calls.
///
/// ## Example
///
/// ```
/// # use vulkano::instance;
/// # use vulkano::instance::Instance;
/// # use vulkano::instance::InstanceExtensions;
/// # use std::sync::Arc;
/// # use std::error::Error;
/// # fn test() -> Result<Arc<Instance>, Box<Error>> {
/// // For the sake of the example, we activate all the layers that
/// // contain the word "foo" in their description.
/// let layers: Vec<_> = instance::layers_list()?
///     .filter(|l| l.description().contains("foo"))
///     .collect();
///
/// let layer_names = layers.iter()
///     .map(|l| l.name());
///
/// let instance = Instance::new(None, &InstanceExtensions::none(), layer_names)?;
/// # Ok(instance)
/// # }
/// ```
// TODO: mention that extensions must be supported by layers as well
pub struct Instance {
    instance: vk::Instance,
    //alloc: Option<Box<Alloc + Send + Sync>>,
    physical_devices: Vec<PhysicalDeviceInfos>,
    vk: vk::InstancePointers,
    extensions: InstanceExtensions,
    layers: SmallVec<[CString; 16]>,
    function_pointers: OwnedOrRef<FunctionPointers<Box<Loader + Send + Sync>>>,
}

// TODO: fix the underlying cause instead
impl ::std::panic::UnwindSafe for Instance {
}
impl ::std::panic::RefUnwindSafe for Instance {
}

impl Instance {
    /// Initializes a new instance of Vulkan.
    ///
    /// See the documentation of `Instance` or of [the `instance` module](index.html) for more
    /// details.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    ///
    /// let instance = match Instance::new(None, &InstanceExtensions::none(), None) {
    ///     Ok(i) => i,
    ///     Err(err) => panic!("Couldn't build instance: {:?}", err)
    /// };
    /// ```
    ///
    /// # Panic
    ///
    /// - Panics if the version numbers passed in `ApplicationInfo` are too large can't be
    ///   converted into a Vulkan version number.
    /// - Panics if the application name or engine name contain a null character.
    // TODO: add a test for these ^
    // TODO: if no allocator is specified by the user, use Rust's allocator instead of leaving
    //       the choice to Vulkan
    pub fn new<'a, L, Ext>(app_infos: Option<&ApplicationInfo>, extensions: Ext, layers: L)
                           -> Result<Arc<Instance>, InstanceCreationError>
        where L: IntoIterator<Item = &'a str>,
              Ext: Into<RawInstanceExtensions>
    {
        let layers = layers
            .into_iter()
            .map(|layer| CString::new(layer).unwrap())
            .collect::<SmallVec<[_; 16]>>();

        Instance::new_inner(app_infos,
                            extensions.into(),
                            layers,
                            OwnedOrRef::Ref(loader::auto_loader()?))
    }

    /// Same as `new`, but allows specifying a loader where to load Vulkan from.
    pub fn with_loader<'a, L, Ext>(loader: FunctionPointers<Box<Loader + Send + Sync>>,
                                   app_infos: Option<&ApplicationInfo>, extensions: Ext, layers: L)
                                   -> Result<Arc<Instance>, InstanceCreationError>
        where L: IntoIterator<Item = &'a str>,
              Ext: Into<RawInstanceExtensions>
    {
        let layers = layers
            .into_iter()
            .map(|layer| CString::new(layer).unwrap())
            .collect::<SmallVec<[_; 16]>>();

        Instance::new_inner(app_infos,
                            extensions.into(),
                            layers,
                            OwnedOrRef::Owned(loader))
    }

    fn new_inner(app_infos: Option<&ApplicationInfo>, extensions: RawInstanceExtensions,
                 layers: SmallVec<[CString; 16]>,
                 function_pointers: OwnedOrRef<FunctionPointers<Box<Loader + Send + Sync>>>)
                 -> Result<Arc<Instance>, InstanceCreationError> {
        // TODO: For now there are still buggy drivers that will segfault if you don't pass any
        //       appinfos. Therefore for now we ensure that it can't be `None`.
        let def = Default::default();
        let app_infos = match app_infos {
            Some(a) => Some(a),
            None => Some(&def),
        };

        // Building the CStrings from the `str`s within `app_infos`.
        // They need to be created ahead of time, since we pass pointers to them.
        let app_infos_strings = if let Some(app_infos) = app_infos {
            Some((app_infos
                      .application_name
                      .clone()
                      .map(|n| CString::new(n.as_bytes().to_owned()).unwrap()),
                  app_infos
                      .engine_name
                      .clone()
                      .map(|n| CString::new(n.as_bytes().to_owned()).unwrap())))
        } else {
            None
        };

        // Building the `vk::ApplicationInfo` if required.
        let app_infos = if let Some(app_infos) = app_infos {
            Some(vk::ApplicationInfo {
                sType: vk::STRUCTURE_TYPE_APPLICATION_INFO,
                pNext: ptr::null(),
                pApplicationName: app_infos_strings
                    .as_ref()
                    .unwrap()
                    .0
                    .as_ref()
                    .map(|s| s.as_ptr())
                    .unwrap_or(ptr::null()),
                applicationVersion: app_infos
                    .application_version
                    .map(|v| v.into_vulkan_version())
                    .unwrap_or(0),
                pEngineName: app_infos_strings
                    .as_ref()
                    .unwrap()
                    .1
                    .as_ref()
                    .map(|s| s.as_ptr())
                    .unwrap_or(ptr::null()),
                engineVersion: app_infos
                    .engine_version
                    .map(|v| v.into_vulkan_version())
                    .unwrap_or(0),
                apiVersion: Version {
                    major: 1,
                    minor: 0,
                    patch: 0,
                }.into_vulkan_version(), // TODO:
            })

        } else {
            None
        };

        // FIXME: check whether each layer is supported
        let layers_ptr = layers
            .iter()
            .map(|layer| layer.as_ptr())
            .collect::<SmallVec<[_; 16]>>();

        let extensions_list = extensions
            .iter()
            .map(|extension| extension.as_ptr())
            .collect::<SmallVec<[_; 32]>>();

        // Creating the Vulkan instance.
        let instance = unsafe {
            let mut output = mem::uninitialized();
            let infos = vk::InstanceCreateInfo {
                sType: vk::STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
                pNext: ptr::null(),
                flags: 0,
                pApplicationInfo: if let Some(app) = app_infos.as_ref() {
                    app as *const _
                } else {
                    ptr::null()
                },
                enabledLayerCount: layers_ptr.len() as u32,
                ppEnabledLayerNames: layers_ptr.as_ptr(),
                enabledExtensionCount: extensions_list.len() as u32,
                ppEnabledExtensionNames: extensions_list.as_ptr(),
            };

            let entry_points = function_pointers.entry_points();
            check_errors(entry_points.CreateInstance(&infos, ptr::null(), &mut output))?;
            output
        };

        // Loading the function pointers of the newly-created instance.
        let vk = {
            vk::InstancePointers::load(|name| unsafe {
                mem::transmute(function_pointers.get_instance_proc_addr(instance, name.as_ptr()))
            })
        };

        // Enumerating all physical devices.
        let physical_devices: Vec<vk::PhysicalDevice> = unsafe {
            let mut num = 0;
            check_errors(vk.EnumeratePhysicalDevices(instance, &mut num, ptr::null_mut()))?;

            let mut devices = Vec::with_capacity(num as usize);
            check_errors(vk.EnumeratePhysicalDevices(instance, &mut num, devices.as_mut_ptr()))?;
            devices.set_len(num as usize);
            devices
        };

        // TODO: should be Into
        let extensions: InstanceExtensions = (&extensions).into();

        // Getting the properties of all physical devices.
        // If possible, we use VK_KHR_get_physical_device_properties2.
        let physical_devices = if extensions.khr_get_physical_device_properties2 {
            Instance::init_physical_devices2(&vk, physical_devices, &extensions)
        } else {
            Instance::init_physical_devices(&vk, physical_devices)
        };

        Ok(Arc::new(Instance {
                        instance: instance,
                        //alloc: None,
                        physical_devices: physical_devices,
                        vk: vk,
                        extensions: extensions,
                        layers: layers,
                        function_pointers: function_pointers,
                    }))
    }

    /// Initialize all physical devices
    fn init_physical_devices(vk: &vk::InstancePointers, physical_devices: Vec<vk::PhysicalDevice>)
                             -> Vec<PhysicalDeviceInfos> {
        let mut output = Vec::with_capacity(physical_devices.len());

        for device in physical_devices.into_iter() {
            let properties: vk::PhysicalDeviceProperties = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceProperties(device, &mut output);
                output
            };

            let queue_families = unsafe {
                let mut num = 0;
                vk.GetPhysicalDeviceQueueFamilyProperties(device, &mut num, ptr::null_mut());

                let mut families = Vec::with_capacity(num as usize);
                vk.GetPhysicalDeviceQueueFamilyProperties(device, &mut num, families.as_mut_ptr());
                families.set_len(num as usize);
                families
            };

            let memory: vk::PhysicalDeviceMemoryProperties = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceMemoryProperties(device, &mut output);
                output
            };

            let available_features: vk::PhysicalDeviceFeatures = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceFeatures(device, &mut output);
                output
            };

            output.push(PhysicalDeviceInfos {
                            device: device,
                            properties: properties,
                            memory: memory,
                            queue_families: queue_families,
                            available_features: Features::from_vulkan_features(available_features),
                        });
        }
        output
    }

    /// Initialize all physical devices, but use VK_KHR_get_physical_device_properties2
    /// TODO: Query extension-specific physical device properties, once a new instance extension is supported.
    fn init_physical_devices2(vk: &vk::InstancePointers,
                              physical_devices: Vec<vk::PhysicalDevice>,
                              extensions: &InstanceExtensions)
                              -> Vec<PhysicalDeviceInfos> {
        let mut output = Vec::with_capacity(physical_devices.len());

        for device in physical_devices.into_iter() {
            let properties: vk::PhysicalDeviceProperties = unsafe {
                let mut output = vk::PhysicalDeviceProperties2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR,
                    pNext: ptr::null_mut(),
                    properties: mem::uninitialized(),
                };

                vk.GetPhysicalDeviceProperties2KHR(device, &mut output);
                output.properties
            };

            let queue_families = unsafe {
                let mut num = 0;
                vk.GetPhysicalDeviceQueueFamilyProperties2KHR(device, &mut num, ptr::null_mut());

                let mut families = (0 .. num)
                    .map(|_| {
                             vk::QueueFamilyProperties2KHR {
                                 sType: vk::STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR,
                                 pNext: ptr::null_mut(),
                                 queueFamilyProperties: mem::uninitialized(),
                             }
                         })
                    .collect::<Vec<_>>();

                vk.GetPhysicalDeviceQueueFamilyProperties2KHR(device,
                                                              &mut num,
                                                              families.as_mut_ptr());
                families
                    .into_iter()
                    .map(|family| family.queueFamilyProperties)
                    .collect()
            };

            let memory: vk::PhysicalDeviceMemoryProperties = unsafe {
                let mut output = vk::PhysicalDeviceMemoryProperties2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR,
                    pNext: ptr::null_mut(),
                    memoryProperties: mem::uninitialized(),
                };
                vk.GetPhysicalDeviceMemoryProperties2KHR(device, &mut output);
                output.memoryProperties
            };

            let available_features: vk::PhysicalDeviceFeatures = unsafe {
                let mut output = vk::PhysicalDeviceFeatures2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR,
                    pNext: ptr::null_mut(),
                    features: mem::uninitialized(),
                };
                vk.GetPhysicalDeviceFeatures2KHR(device, &mut output);
                output.features
            };

            output.push(PhysicalDeviceInfos {
                            device: device,
                            properties: properties,
                            memory: memory,
                            queue_families: queue_families,
                            available_features: Features::from_vulkan_features(available_features),
                        });
        }
        output
    }

    /*/// Same as `new`, but provides an allocator that will be used by the Vulkan library whenever
    /// it needs to allocate memory on the host.
    ///
    /// Note that this allocator can be overridden when you create a `Device`, a `MemoryPool`, etc.
    pub fn with_alloc(app_infos: Option<&ApplicationInfo>, alloc: Box<Alloc + Send + Sync>) -> Arc<Instance> {
        unimplemented!()
    }*/

    /// Grants access to the Vulkan functions of the instance.
    #[inline]
    pub(crate) fn pointers(&self) -> &vk::InstancePointers {
        &self.vk
    }

    /// Returns the list of extensions that have been loaded.
    ///
    /// This list is equal to what was passed to `Instance::new()`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    ///
    /// let extensions = InstanceExtensions::supported_by_core().unwrap();
    /// let instance = Instance::new(None, &extensions, None).unwrap();
    /// assert_eq!(instance.loaded_extensions(), &extensions);
    /// ```
    #[inline]
    pub fn loaded_extensions(&self) -> &InstanceExtensions {
        &self.extensions
    }

    /// Returns the list of layers requested when creating this instance.
    #[doc(hidden)]
    #[inline]
    pub fn loaded_layers(&self) -> slice::Iter<CString> {
        self.layers.iter()
    }
}

impl fmt::Debug for Instance {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "<Vulkan instance {:?}>", self.instance)
    }
}

unsafe impl VulkanObject for Instance {
    type Object = vk::Instance;

    const TYPE: vk::DebugReportObjectTypeEXT = vk::DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT;

    #[inline]
    fn internal_object(&self) -> vk::Instance {
        self.instance
    }
}

impl Drop for Instance {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            self.vk.DestroyInstance(self.instance, ptr::null());
        }
    }
}

// Same as Cow but less annoying.
enum OwnedOrRef<T: 'static> {
    Owned(T),
    Ref(&'static T),
}

impl<T> Deref for OwnedOrRef<T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        match *self {
            OwnedOrRef::Owned(ref v) => v,
            OwnedOrRef::Ref(v) => v,
        }
    }
}

/// Information that can be given to the Vulkan driver so that it can identify your application.
// TODO: better documentation for struct and methods
#[derive(Debug, Clone)]
pub struct ApplicationInfo<'a> {
    /// Name of the application.
    pub application_name: Option<Cow<'a, str>>,
    /// An opaque number that contains the version number of the application.
    pub application_version: Option<Version>,
    /// Name of the engine used to power the application.
    pub engine_name: Option<Cow<'a, str>>,
    /// An opaque number that contains the version number of the engine.
    pub engine_version: Option<Version>,
}

impl<'a> ApplicationInfo<'a> {
    /// Builds an `ApplicationInfo` from the information gathered by Cargo.
    ///
    /// # Panic
    ///
    /// - Panics if the required environment variables are missing, which happens if the project
    ///   wasn't built by Cargo.
    ///
    #[deprecated(note = "Please use the `app_info_from_cargo_toml!` macro instead")]
    pub fn from_cargo_toml() -> ApplicationInfo<'a> {
        let version = Version {
            major: env!("CARGO_PKG_VERSION_MAJOR").parse().unwrap(),
            minor: env!("CARGO_PKG_VERSION_MINOR").parse().unwrap(),
            patch: env!("CARGO_PKG_VERSION_PATCH").parse().unwrap(),
        };

        let name = env!("CARGO_PKG_NAME");

        ApplicationInfo {
            application_name: Some(name.into()),
            application_version: Some(version),
            engine_name: None,
            engine_version: None,
        }
    }
}

/// Builds an `ApplicationInfo` from the information gathered by Cargo.
///
/// # Panic
///
/// - Panics if the required environment variables are missing, which happens if the project
///   wasn't built by Cargo.
///
#[macro_export]
macro_rules! app_info_from_cargo_toml {
    () => {{
        let version = $crate::instance::Version {
            major: env!("CARGO_PKG_VERSION_MAJOR").parse().unwrap(),
            minor: env!("CARGO_PKG_VERSION_MINOR").parse().unwrap(),
            patch: env!("CARGO_PKG_VERSION_PATCH").parse().unwrap(),
        };

        let name = env!("CARGO_PKG_NAME");

        $crate::instance::ApplicationInfo {
            application_name: Some(name.into()),
            application_version: Some(version),
            engine_name: None,
            engine_version: None,
        }
    }}
}

impl<'a> Default for ApplicationInfo<'a> {
    fn default() -> ApplicationInfo<'a> {
        ApplicationInfo {
            application_name: None,
            application_version: None,
            engine_name: None,
            engine_version: None,
        }
    }
}

/// Error that can happen when creating an instance.
#[derive(Clone, Debug)]
pub enum InstanceCreationError {
    /// Failed to load the Vulkan shared library.
    LoadingError(LoadingError),
    /// Not enough memory.
    OomError(OomError),
    /// Failed to initialize for an implementation-specific reason.
    InitializationFailed,
    /// One of the requested layers is missing.
    LayerNotPresent,
    /// One of the requested extensions is missing.
    ExtensionNotPresent,
    /// The version requested is not supported by the implementation.
    // TODO: more info about this once the question of the version has been resolved
    IncompatibleDriver,
}

impl error::Error for InstanceCreationError {
    #[inline]
    fn description(&self) -> &str {
        match *self {
            InstanceCreationError::LoadingError(_) => "failed to load the Vulkan shared library",
            InstanceCreationError::OomError(_) => "not enough memory available",
            InstanceCreationError::InitializationFailed => "initialization failed",
            InstanceCreationError::LayerNotPresent => "layer not present",
            InstanceCreationError::ExtensionNotPresent => "extension not present",
            InstanceCreationError::IncompatibleDriver => "incompatible driver",
        }
    }

    #[inline]
    fn cause(&self) -> Option<&error::Error> {
        match *self {
            InstanceCreationError::LoadingError(ref err) => Some(err),
            InstanceCreationError::OomError(ref err) => Some(err),
            _ => None,
        }
    }
}

impl fmt::Display for InstanceCreationError {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "{}", error::Error::description(self))
    }
}

impl From<OomError> for InstanceCreationError {
    #[inline]
    fn from(err: OomError) -> InstanceCreationError {
        InstanceCreationError::OomError(err)
    }
}

impl From<LoadingError> for InstanceCreationError {
    #[inline]
    fn from(err: LoadingError) -> InstanceCreationError {
        InstanceCreationError::LoadingError(err)
    }
}

impl From<Error> for InstanceCreationError {
    #[inline]
    fn from(err: Error) -> InstanceCreationError {
        match err {
            err @ Error::OutOfHostMemory => InstanceCreationError::OomError(OomError::from(err)),
            err @ Error::OutOfDeviceMemory => InstanceCreationError::OomError(OomError::from(err)),
            Error::InitializationFailed => InstanceCreationError::InitializationFailed,
            Error::LayerNotPresent => InstanceCreationError::LayerNotPresent,
            Error::ExtensionNotPresent => InstanceCreationError::ExtensionNotPresent,
            Error::IncompatibleDriver => InstanceCreationError::IncompatibleDriver,
            _ => panic!("unexpected error: {:?}", err),
        }
    }
}

struct PhysicalDeviceInfos {
    device: vk::PhysicalDevice,
    properties: vk::PhysicalDeviceProperties,
    queue_families: Vec<vk::QueueFamilyProperties>,
    memory: vk::PhysicalDeviceMemoryProperties,
    available_features: Features,
}

/// Represents one of the available devices on this machine.
///
/// This struct simply contains a pointer to an instance and a number representing the physical
/// device. You are therefore encouraged to pass this around by value instead of by reference.
///
/// # Example
///
/// ```no_run
/// # use vulkano::instance::Instance;
/// # use vulkano::instance::InstanceExtensions;
/// use vulkano::instance::PhysicalDevice;
///
/// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
/// for physical_device in PhysicalDevice::enumerate(&instance) {
///     print_infos(physical_device);
/// }
///
/// fn print_infos(dev: PhysicalDevice) {
///     println!("Name: {}", dev.name());
/// }
/// ```
#[derive(Debug, Copy, Clone)]
pub struct PhysicalDevice<'a> {
    instance: &'a Arc<Instance>,
    device: usize,
}

impl<'a> PhysicalDevice<'a> {
    /// Returns an iterator that enumerates the physical devices available.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use vulkano::instance::Instance;
    /// # use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// for physical_device in PhysicalDevice::enumerate(&instance) {
    ///     println!("Available device: {}", physical_device.name());
    /// }
    /// ```
    #[inline]
    pub fn enumerate(instance: &'a Arc<Instance>) -> PhysicalDevicesIter<'a> {
        PhysicalDevicesIter {
            instance: instance,
            current_id: 0,
        }
    }

    /// Returns a physical device from its index. Returns `None` if out of range.
    ///
    /// Indices range from 0 to the number of devices.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// let first_physical_device = PhysicalDevice::from_index(&instance, 0).unwrap();
    /// ```
    #[inline]
    pub fn from_index(instance: &'a Arc<Instance>, index: usize) -> Option<PhysicalDevice<'a>> {
        if instance.physical_devices.len() > index {
            Some(PhysicalDevice {
                     instance: instance,
                     device: index,
                 })
        } else {
            None
        }
    }

    /// Returns the instance corresponding to this physical device.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// fn do_something(physical_device: PhysicalDevice) {
    ///     let _loaded_extensions = physical_device.instance().loaded_extensions();
    ///     // ...
    /// }
    /// ```
    #[inline]
    pub fn instance(&self) -> &'a Arc<Instance> {
        &self.instance
    }

    /// Returns the index of the physical device in the physical devices list.
    ///
    /// This index never changes and can be used later to retrieve a `PhysicalDevice` from an
    /// instance and an index.
    #[inline]
    pub fn index(&self) -> usize {
        self.device
    }

    /// Returns the human-readable name of the device.
    #[inline]
    pub fn name(&self) -> String {
        // FIXME: for some reason this panics if you use a `&str`
        unsafe {
            let val = self.infos().properties.deviceName;
            let val = CStr::from_ptr(val.as_ptr());
            val.to_str()
                .expect("physical device name contained non-UTF8 characters")
                .to_owned()
        }
    }

    /// Returns the type of the device.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use vulkano::instance::Instance;
    /// # use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// for physical_device in PhysicalDevice::enumerate(&instance) {
    ///     println!("Available device: {} (type: {:?})",
    ///               physical_device.name(), physical_device.ty());
    /// }
    /// ```
    #[inline]
    pub fn ty(&self) -> PhysicalDeviceType {
        match self.instance.physical_devices[self.device]
            .properties
            .deviceType {
            vk::PHYSICAL_DEVICE_TYPE_OTHER => PhysicalDeviceType::Other,
            vk::PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU => PhysicalDeviceType::IntegratedGpu,
            vk::PHYSICAL_DEVICE_TYPE_DISCRETE_GPU => PhysicalDeviceType::DiscreteGpu,
            vk::PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU => PhysicalDeviceType::VirtualGpu,
            vk::PHYSICAL_DEVICE_TYPE_CPU => PhysicalDeviceType::Cpu,
            _ => panic!("Unrecognized Vulkan device type"),
        }
    }

    /// Returns the version of Vulkan supported by this device.
    #[inline]
    pub fn api_version(&self) -> Version {
        let val = self.infos().properties.apiVersion;
        Version::from_vulkan_version(val)
    }

    /// Returns the Vulkan features that are supported by this physical device.
    #[inline]
    pub fn supported_features(&self) -> &'a Features {
        &self.infos().available_features
    }

    /// Builds an iterator that enumerates all the queue families on this physical device.
    #[inline]
    pub fn queue_families(&self) -> QueueFamiliesIter<'a> {
        QueueFamiliesIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the queue family with the given index, or `None` if out of range.
    #[inline]
    pub fn queue_family_by_id(&self, id: u32) -> Option<QueueFamily<'a>> {
        if (id as usize) < self.infos().queue_families.len() {
            Some(QueueFamily {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Builds an iterator that enumerates all the memory types on this physical device.
    #[inline]
    pub fn memory_types(&self) -> MemoryTypesIter<'a> {
        MemoryTypesIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the memory type with the given index, or `None` if out of range.
    #[inline]
    pub fn memory_type_by_id(&self, id: u32) -> Option<MemoryType<'a>> {
        if id < self.infos().memory.memoryTypeCount {
            Some(MemoryType {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Builds an iterator that enumerates all the memory heaps on this physical device.
    #[inline]
    pub fn memory_heaps(&self) -> MemoryHeapsIter<'a> {
        MemoryHeapsIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the memory heap with the given index, or `None` if out of range.
    #[inline]
    pub fn memory_heap_by_id(&self, id: u32) -> Option<MemoryHeap<'a>> {
        if id < self.infos().memory.memoryHeapCount {
            Some(MemoryHeap {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Gives access to the limits of the physical device.
    ///
    /// This function should be zero-cost in release mode. It only exists to not pollute the
    /// namespace of `PhysicalDevice` with all the limits-related getters.
    #[inline]
    pub fn limits(&self) -> Limits<'a> {
        Limits::from_vk_limits(&self.infos().properties.limits)
    }

    /// Returns an opaque number representing the version of the driver of this device.
    ///
    /// The meaning of this number is implementation-specific. It can be used in bug reports, for
    /// example.
    #[inline]
    pub fn driver_version(&self) -> u32 {
        self.infos().properties.driverVersion
    }

    /// Returns the PCI ID of the device.
    #[inline]
    pub fn pci_device_id(&self) -> u32 {
        self.infos().properties.deviceID
    }

    /// Returns the PCI ID of the vendor.
    #[inline]
    pub fn pci_vendor_id(&self) -> u32 {
        self.infos().properties.vendorID
    }

    /// Returns a unique identifier for the device.
    ///
    /// Can be stored in a configuration file, so that you can retrieve the device again the next
    /// time the program is run.
    #[inline]
    pub fn uuid(&self) -> &[u8; 16] {
        // must be equal to vk::UUID_SIZE
        &self.infos().properties.pipelineCacheUUID
    }

    // Internal function to make it easier to get the infos of this device.
    #[inline]
    fn infos(&self) -> &'a PhysicalDeviceInfos {
        &self.instance.physical_devices[self.device]
    }
}

unsafe impl<'a> VulkanObject for PhysicalDevice<'a> {
    type Object = vk::PhysicalDevice;

    const TYPE: vk::DebugReportObjectTypeEXT = vk::DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT;

    #[inline]
    fn internal_object(&self) -> vk::PhysicalDevice {
        self.infos().device
    }
}

/// Iterator for all the physical devices available on hardware.
#[derive(Debug, Clone)]
pub struct PhysicalDevicesIter<'a> {
    instance: &'a Arc<Instance>,
    current_id: usize,
}

impl<'a> Iterator for PhysicalDevicesIter<'a> {
    type Item = PhysicalDevice<'a>;

    #[inline]
    fn next(&mut self) -> Option<PhysicalDevice<'a>> {
        if self.current_id >= self.instance.physical_devices.len() {
            return None;
        }

        let dev = PhysicalDevice {
            instance: self.instance,
            device: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.instance.physical_devices.len() - self.current_id;
        (len, Some(len))
    }
}

impl<'a> ExactSizeIterator for PhysicalDevicesIter<'a> {
}

/// Type of a physical device.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum PhysicalDeviceType {
    /// The device is an integrated GPU.
    IntegratedGpu = 1,
    /// The device is a discrete GPU.
    DiscreteGpu = 2,
    /// The device is a virtual GPU.
    VirtualGpu = 3,
    /// The device is a CPU.
    Cpu = 4,
    /// The device is something else.
    Other = 0,
}

/// Represents a queue family in a physical device.
///
/// A queue family is group of one or multiple queues. All queues of one family have the same
/// characteristics.
#[derive(Debug, Copy, Clone)]
pub struct QueueFamily<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> QueueFamily<'a> {
    /// Returns the physical device associated to this queue family.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this queue family within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the number of queues that belong to this family.
    ///
    /// Guaranteed to be at least 1 (or else that family wouldn't exist).
    #[inline]
    pub fn queues_count(&self) -> usize {
        self.physical_device.infos().queue_families[self.id as usize].queueCount as usize
    }

    /// If timestamps are supported, returns the number of bits supported by timestamp operations.
    /// The returned value will be in the range 36..64.
    /// If timestamps are not supported, returns None.
    #[inline]
    pub fn timestamp_valid_bits(&self) -> Option<u32> {
        let value = self.physical_device.infos().queue_families[self.id as usize].timestampValidBits;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// Returns the minimum granularity supported for image transfers in terms
    /// of `[width, height, depth]`
    #[inline]
    pub fn min_image_transfer_granularity(&self) -> [u32; 3] {
        let ref granularity = self.physical_device.infos().queue_families[self.id as usize]
            .minImageTransferGranularity;
        [granularity.width, granularity.height, granularity.depth]
    }

    /// Returns true if queues of this family can execute graphics operations.
    #[inline]
    pub fn supports_graphics(&self) -> bool {
        (self.flags() & vk::QUEUE_GRAPHICS_BIT) != 0
    }

    /// Returns true if queues of this family can execute compute operations.
    #[inline]
    pub fn supports_compute(&self) -> bool {
        (self.flags() & vk::QUEUE_COMPUTE_BIT) != 0
    }

    /// Returns true if queues of this family can execute transfer operations.
    ///
    /// > **Note**: Queues that support graphics or compute operations also always support transfer
    /// > operations. As of writing this, this function will always return true. The purpose of
    /// > this function is to be future-proofed in case queues that don't support transfer
    /// > operations are ever added to Vulkan.
    #[inline]
    pub fn supports_transfers(&self) -> bool {
        (self.flags() & vk::QUEUE_TRANSFER_BIT) != 0 || self.supports_graphics() ||
            self.supports_compute()
    }

    /// Returns true if queues of this family can execute sparse resources binding operations.
    #[inline]
    pub fn supports_sparse_binding(&self) -> bool {
        (self.flags() & vk::QUEUE_SPARSE_BINDING_BIT) != 0
    }

    /// Internal utility function that returns the flags of this queue family.
    #[inline]
    fn flags(&self) -> u32 {
        self.physical_device.infos().queue_families[self.id as usize].queueFlags
    }
}

/// Iterator for all the queue families available on a physical device.
#[derive(Debug, Clone)]
pub struct QueueFamiliesIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for QueueFamiliesIter<'a> {
    type Item = QueueFamily<'a>;

    #[inline]
    fn next(&mut self) -> Option<QueueFamily<'a>> {
        if self.current_id as usize >= self.physical_device.infos().queue_families.len() {
            return None;
        }

        let dev = QueueFamily {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().queue_families.len();
        let remain = len - self.current_id as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for QueueFamiliesIter<'a> {
}

/// Represents a memory type in a physical device.
#[derive(Debug, Copy, Clone)]
pub struct MemoryType<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> MemoryType<'a> {
    /// Returns the physical device associated to this memory type.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this memory type within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the heap that corresponds to this memory type.
    #[inline]
    pub fn heap(&self) -> MemoryHeap<'a> {
        let heap_id = self.physical_device.infos().memory.memoryTypes[self.id as usize].heapIndex;
        MemoryHeap {
            physical_device: self.physical_device,
            id: heap_id,
        }
    }

    /// Returns true if the memory type is located on the device, which means that it's the most
    /// efficient for GPU accesses.
    #[inline]
    pub fn is_device_local(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0
    }

    /// Returns true if the memory type can be accessed by the host.
    #[inline]
    pub fn is_host_visible(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0
    }

    /// Returns true if modifications made by the host or the GPU on this memory type are
    /// instantaneously visible to the other party. False means that changes have to be flushed.
    ///
    /// You don't need to worry about this, as this library handles that for you.
    #[inline]
    pub fn is_host_coherent(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0
    }

    /// Returns true if memory of this memory type is cached by the host. Host memory accesses to
    /// cached memory is faster than for uncached memory. However you are not guaranteed that it
    /// is coherent.
    #[inline]
    pub fn is_host_cached(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_CACHED_BIT) != 0
    }

    /// Returns true if allocations made to this memory type is lazy.
    ///
    /// This means that no actual allocation is performed. Instead memory is automatically
    /// allocated by the Vulkan implementation.
    ///
    /// Memory of this type can only be used on images created with a certain flag. Memory of this
    /// type is never host-visible.
    #[inline]
    pub fn is_lazily_allocated(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0
    }

    /// Internal utility function that returns the flags of this queue family.
    #[inline]
    fn flags(&self) -> u32 {
        self.physical_device.infos().memory.memoryTypes[self.id as usize].propertyFlags
    }
}

/// Iterator for all the memory types available on a physical device.
#[derive(Debug, Clone)]
pub struct MemoryTypesIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for MemoryTypesIter<'a> {
    type Item = MemoryType<'a>;

    #[inline]
    fn next(&mut self) -> Option<MemoryType<'a>> {
        if self.current_id >= self.physical_device.infos().memory.memoryTypeCount {
            return None;
        }

        let dev = MemoryType {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().memory.memoryTypeCount;
        let remain = (len - self.current_id) as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for MemoryTypesIter<'a> {
}

/// Represents a memory heap in a physical device.
#[derive(Debug, Copy, Clone)]
pub struct MemoryHeap<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> MemoryHeap<'a> {
    /// Returns the physical device associated to this memory heap.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this memory heap within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the size in bytes on this heap.
    #[inline]
    pub fn size(&self) -> usize {
        self.physical_device.infos().memory.memoryHeaps[self.id as usize].size as usize
    }

    /// Returns true if the heap is local to the GPU.
    #[inline]
    pub fn is_device_local(&self) -> bool {
        let flags = self.physical_device.infos().memory.memoryHeaps[self.id as usize].flags;
        (flags & vk::MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0
    }
}

/// Iterator for all the memory heaps available on a physical device.
#[derive(Debug, Clone)]
pub struct MemoryHeapsIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for MemoryHeapsIter<'a> {
    type Item = MemoryHeap<'a>;

    #[inline]
    fn next(&mut self) -> Option<MemoryHeap<'a>> {
        if self.current_id >= self.physical_device.infos().memory.memoryHeapCount {
            return None;
        }

        let dev = MemoryHeap {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().memory.memoryHeapCount;
        let remain = (len - self.current_id) as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for MemoryHeapsIter<'a> {
}

#[cfg(test)]
mod tests {
    use instance;

    #[test]
    fn create_instance() {
        let _ = instance!();
    }

    #[test]
    fn queue_family_by_id() {
        let instance = instance!();

        let phys = match instance::PhysicalDevice::enumerate(&instance).next() {
            Some(p) => p,
            None => return,
        };

        let queue_family = match phys.queue_families().next() {
            Some(q) => q,
            None => return,
        };

        let by_id = phys.queue_family_by_id(queue_family.id()).unwrap();
        assert_eq!(by_id.id(), queue_family.id());
    }
}