1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#[cfg(test)]
#[path = "../../../../tests/unit/solver/mutation/ruin/cluster_removal_test.rs"]
mod cluster_removal_test;

use super::*;
use crate::algorithms::dbscan::{create_clusters, Cluster, NeighborhoodFn};
use crate::algorithms::geometry::Point;
use crate::construction::heuristics::InsertionContext;
use crate::models::common::Timestamp;
use crate::models::problem::Job;
use crate::models::Problem;
use crate::solver::RefinementContext;
use crate::utils::{compare_floats, Random};
use hashbrown::HashSet;
use rand::prelude::*;
use std::ops::Range;
use std::sync::{Arc, RwLock};

/// A ruin strategy which removes job clusters using [`DBSCAN`] algorithm.
///
/// [`DBSCAN`]: ../../algorithms/dbscan/index.html
///
pub struct ClusterRemoval {
    /// Stores possible pairs of `min_point` and `epsilon` parameter values.
    params: Vec<(usize, f64)>,
    /// Specifies limitation for job removal.
    limit: JobRemovalLimit,
}

impl ClusterRemoval {
    /// Creates a new instance of `ClusterRemoval`.
    pub fn new(problem: Arc<Problem>, cluster_size: Range<usize>, limit: JobRemovalLimit) -> Self {
        let min = cluster_size.start.max(3);
        let max = cluster_size.end.min(problem.jobs.size()).max(min + 1);

        let params = (min..max).map(|min_pts| (min_pts, estimate_epsilon(&problem, min_pts))).collect::<Vec<_>>();

        Self { params, limit }
    }

    /// Creates a new instance of `ClusterRemoval` with default parameters.
    pub fn new_with_defaults(problem: Arc<Problem>) -> Self {
        Self::new(problem, 3..9, JobRemovalLimit::default())
    }
}

impl Ruin for ClusterRemoval {
    fn run(&self, _: &RefinementContext, mut insertion_ctx: InsertionContext) -> InsertionContext {
        let problem = insertion_ctx.problem.clone();
        let random = insertion_ctx.random.clone();

        let mut clusters = create_job_clusters(&problem, &random, self.params.as_slice());
        clusters.shuffle(&mut insertion_ctx.random.get_rng());

        let mut route_jobs = get_route_jobs(&insertion_ctx.solution);
        let removed_jobs: RwLock<HashSet<Job>> = RwLock::new(HashSet::default());
        let locked = insertion_ctx.solution.locked.clone();
        let affected = get_removal_chunk_size(&insertion_ctx, &self.limit);

        clusters.iter_mut().take_while(|_| removed_jobs.read().unwrap().len() < affected).for_each(|cluster| {
            let left = affected - removed_jobs.read().unwrap().len();
            if cluster.len() > left {
                cluster.shuffle(&mut insertion_ctx.random.get_rng());
            }

            cluster.iter().filter(|job| !locked.contains(job)).take(left).for_each(|job| {
                if let Some(rc) = route_jobs.get_mut(job) {
                    // NOTE actual insertion context modification via route mut
                    if rc.route_mut().tour.remove(&job) {
                        removed_jobs.write().unwrap().insert((*job).clone());
                    }
                }
            });
        });

        removed_jobs.write().unwrap().iter().for_each(|job| insertion_ctx.solution.required.push(job.clone()));

        insertion_ctx
    }
}

fn create_job_clusters<'a>(
    problem: &'a Problem,
    random: &Arc<dyn Random + Send + Sync>,
    params: &[(usize, f64)],
) -> Vec<Cluster<'a, Job>> {
    // get main parameters with some randomization
    let profile = problem.fleet.profiles[random.uniform_int(0, problem.fleet.profiles.len() as i32 - 1) as usize];
    let &(min_items, eps) = params.get(random.uniform_int(0, params.len() as i32 - 1) as usize).unwrap();
    let eps = random.uniform_real(eps * 0.9, eps * 1.1);

    let neighbor_fn: NeighborhoodFn<'a, Job> = Box::new(move |job, eps| {
        Box::new(once(job).chain(
            problem.jobs.neighbors(profile, job, 0.).take_while(move |(_, cost)| *cost < eps).map(|(job, _)| job),
        ))
    });

    create_clusters(problem.jobs.all_as_slice(), eps, min_items, &neighbor_fn)
}

/// Estimates DBSCAN epsilon parameter.
fn estimate_epsilon(problem: &Problem, min_points: usize) -> f64 {
    // for each job get distance to its nth neighbor
    let mut costs = get_average_costs(problem, min_points);

    // sort all distances in ascending order and form the curve
    costs.sort_by(|&a, &b| compare_floats(a, b));
    let curve = costs.into_iter().enumerate().map(|(idx, cost)| Point::new(idx as f64, cost)).collect::<Vec<_>>();

    // get max curvature approximation and return it as a guess for optimal epsilon value
    get_max_curvature(curve.as_slice())
}

/// Gets average costs across all profiles.
fn get_average_costs(problem: &Problem, min_points: usize) -> Vec<f64> {
    let mut costs = problem.fleet.profiles.iter().fold(vec![0.; problem.jobs.size()], |mut acc, &profile| {
        problem.jobs.all().enumerate().for_each(|(idx, job)| {
            acc[idx] += problem
                .jobs
                .neighbors(profile, &job, Timestamp::default())
                .filter(|(_, cost)| *cost > 0.)
                .nth(min_points - 1)
                // TODO consider time window difference as extra cost?
                .map(|(_, cost)| *cost)
                .unwrap_or(0.);
        });
        acc
    });

    costs.iter_mut().for_each(|cost| *cost /= problem.fleet.profiles.len() as f64);

    costs
}

/// Gets max curvature approximation: for each point p on the curve, find the one with the maximum
/// distance d to a line drawn from the first to the last point of the curves.
fn get_max_curvature(values: &[Point]) -> f64 {
    if values.is_empty() {
        return 0.;
    }

    let first = values.first().unwrap();
    let last = values.last().unwrap();

    values
        .iter()
        .fold((0., std::f64::MIN), |acc, p| {
            let distance = p.distance_to_line(&first, &last);

            if distance > acc.1 {
                (p.y, distance)
            } else {
                acc
            }
        })
        .0
}