1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
use num::{Num, Zero, One};
use rustc_serialize::{Encodable, Decodable};
use std::fmt::Debug;

/// Vector whose dimension is known at runtime
///
/// Assumes the `Vector` is represented as a
/// tuple of numbers representing its projection
/// along orthogonal base vectors
pub trait Vector: Clone {
    /// Underlying scalar type of `Vector` type
    type Scalar: Num + Zero + One + Copy + Encodable + Decodable + Default + Debug;
    /// Maximum allowed index for `at` and `mut_at`
    fn dimension(&self) -> usize;
    /// Length of projection along `i`-th base
    fn at(&self, i: usize) -> Self::Scalar;
    /// Mutable access to length of projection along `i`-th base
    fn mut_at(&mut self, i: usize) -> &mut Self::Scalar;
    /// Scalar product
    ///
    /// Default implementation using `at` and `dimension` is provided
    fn dot(&self, other: &Self) -> Self::Scalar {
        let mut result = Self::Scalar::zero();
        for i in 0..self.dimension() {
            result = result + self.at(i) * other.at(i)
        }
        result
    }
}

impl Vector for f64 {
    type Scalar = f64;

    fn dimension(&self) -> usize {
        1
    }

    fn at(&self, _: usize) -> f64 {
        *self
    }

    fn mut_at(&mut self, _: usize) -> &mut f64 {
        self
    }

    fn dot(&self, other: &f64) -> f64 {
        self * other
    }
}

macro_rules! vec_impl_for_array {
    ($v:expr) => {
        impl Vector for [f64; $v] {

            type Scalar = f64;

            fn dimension(&self) -> usize{ $v }

            fn at(&self, index: usize) -> f64 {
                self[index]
            }

            fn mut_at(&mut self, index: usize) -> &mut f64 {
                &mut self[index]
            }
        }
    }
}

vec_impl_for_array! { 1 }
vec_impl_for_array! { 2 }
vec_impl_for_array! { 3 }
vec_impl_for_array! { 4 }
vec_impl_for_array! { 5 }
vec_impl_for_array! { 6 }
vec_impl_for_array! { 7 }
vec_impl_for_array! { 8 }
vec_impl_for_array! { 9 }
vec_impl_for_array! { 10 }
vec_impl_for_array! { 11 }
vec_impl_for_array! { 12 }
vec_impl_for_array! { 13 }
vec_impl_for_array! { 14 }
vec_impl_for_array! { 15 }
vec_impl_for_array! { 16 }
vec_impl_for_array! { 17 }
vec_impl_for_array! { 18 }
vec_impl_for_array! { 19 }
vec_impl_for_array! { 20 }
vec_impl_for_array! { 21 }
vec_impl_for_array! { 22 }
vec_impl_for_array! { 23 }
vec_impl_for_array! { 24 }
vec_impl_for_array! { 25 }
vec_impl_for_array! { 26 }
vec_impl_for_array! { 27 }
vec_impl_for_array! { 28 }
vec_impl_for_array! { 29 }
vec_impl_for_array! { 30 }
vec_impl_for_array! { 31 }
vec_impl_for_array! { 32 }

#[cfg(test)]
mod tests {

    #[test]
    fn dot() {

        use linear_algebra::Vector;

        let a = [1.0, 2.0];
        let b = [3.0, 4.0];

        assert_eq!(11.0, a.dot(&b))
    }
}