1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//! Allows the creation of pointers which are guaranteed to be equal pointers for equal data.
//!
//! Useful for applications with highly-redundant or deeply nested data structures such as
//! compilers or automatic theorem provers.
//!
//! In future this crate may support recovery of allocated memory that is no longer required (via e.g. mark-and-sweep), but
//! for now all backing stores leak memory as required.
//!
//! # Example
//! ```rust
//! use lazy_static::lazy_static;
//! use unique::{Backed, Id};
//! use unique::backing::HashBacking;
//!
//! #[derive(PartialEq, Eq, Hash)]
//! enum Expr {
//!     Const(i32),
//!     Add(Id<Expr>, Id<Expr>),
//! }
//!
//! lazy_static! {
//!     static ref EXPR_BACKING: HashBacking<Expr> = HashBacking::new(100);
//! }
//!
//! impl Backed for Expr {
//!     fn unique(value: Self) -> Id<Self> {
//!         EXPR_BACKING.unique(value)
//!     }
//! }
//!
//! #[test]
//! fn example() {
//!     let two_x = Id::new(Expr::Const(2));
//!     let two_y = Id::new(Expr::Const(2));
//!     assert!(two_x.as_ref() as *const Expr == two_y.as_ref() as *const Expr);
//! }
//! ```

use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Deref;

/// Data structures for implementing backing stores.
pub mod backing;

#[cfg(test)]
mod tests;

/// A type which has some backing store.
///
/// Allows the use of `Id::new`
pub trait Backed {
    fn unique(value: Self) -> Id<Self>;
}

/// A unique pointer to data, allocated by a backing store.
///
/// By "unique" I mean that if `t1 == t2` (as determined by the backing store), then
/// `Id::new(t1)` is pointer-equal to `Id::new(t2)`.
/// This property reduces memory use, reduces allocator hits, and allows for short-circuiting operations such as `Eq` (pointer equality instead of object equality), and `Hash` (pointer hash instead of object hash).
pub struct Id<T: ?Sized>(*const T);

unsafe impl<T> Send for Id<T> {}
unsafe impl<T> Sync for Id<T> {}

impl<T> Id<T> {
    /// Produce an integral ID from an `Id`.
    pub fn id(p: Self) -> usize {
        p.0 as usize
    }
}

impl<T: Backed> Id<T> {
    /// Ask the backing store for a uniq'd pointer to `data`.
    ///
    /// This may be newly-allocated or recycled.
    pub fn new(data: T) -> Id<T> {
        T::unique(data)
    }
}

impl<T: Backed + Eq> Id<T> {
    /// Attempt to re-use this pointer for `data` if is value-equal, or allocate if not.
    ///
    /// Useful over `Id::new` as a performance optimisation.
    pub fn reuse(p: Self, data: T) -> Self {
        if *p == data {
            p
        } else {
            Id::new(data)
        }
    }
}

impl<T: Backed> From<T> for Id<T> {
    fn from(t: T) -> Self {
        Id::new(t)
    }
}

impl<T> Clone for Id<T> {
    fn clone(&self) -> Self {
        Id(self.0)
    }
}

impl<T> Copy for Id<T> {}

impl<T> PartialEq for Id<T> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<T> Eq for Id<T> {}

impl<T: PartialOrd> PartialOrd for Id<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }
}

impl<T: Ord> Ord for Id<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        (**self).cmp(&**other)
    }
}

impl<T> Hash for Id<T> {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        self.0.hash(hasher)
    }
}

impl<T> Deref for Id<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        unsafe { &*self.0 }
    }
}

impl<T> AsRef<T> for Id<T> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<T> Borrow<T> for Id<T> {
    fn borrow(&self) -> &T {
        self
    }
}

impl<T: fmt::Debug> fmt::Debug for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_ref().fmt(f)
    }
}

impl<T: fmt::Display> fmt::Display for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_ref().fmt(f)
    }
}

impl<T> fmt::Pointer for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:p}", self.0)
    }
}