1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//!
//! Algebraic _multiplicative_ _group_ traits.
//!
//! An algebraic _multiplicative_ _group_ is a _multiplicative_
//! _monoid_ `M`, where each _invertible_ group element `g` has a
//! unique multiplicative _inverse_ denoted `g^-1`.  The inverse
//! operation is called _invert_.
//!
//! # Axioms
//!
//! ```notrust
//! ∀g ∈ M
//! 
//! Inverse: ∃g^-1 ∈ M: g × g^-1 = g^-1 × g = 1.
//! ```
//!
//! # References
//!
//! See [references] for a formal definition of a multiplicative
//! group.
//!
#![doc(include = "../doc/references.md")]

use monoid::mul_monoid::*;


///
/// An algebraic _multiplicative group_.
///
pub trait MulGroup: MulMonoid {

  /// The unique multiplicative inverse of a group element.
  /// Inversion is only defined for _invertible_ group elements.
  fn invert(&self) -> Self;


  /// Test for an _invertible_ group element.
  fn is_invertible(&self) -> bool;


  /// The multiplicative "division" of two group elements.
  fn div(&self, other: &Self) -> Self {
    self.mul(&other.invert())
  }


  /// Test the left axiom of inversion.
  fn axiom_left_invert(&self) -> bool {
     self.invert().mul(self) == Self::one()
  }


  /// Test the right axiom of inversion.
  fn axiom_right_invert(&self) -> bool {
    self.mul(&self.invert()) == Self::one()
  }
}


///
/// A "numeric" algebraic _multiplicative group_.
///
/// `NumAddGroup` trait is for types that only form multiplicative
/// groups when "numeric" comparisons are used, e.g. floating point
/// types.
///
pub trait NumMulGroup: NumMulMonoid {

  /// The unique multiplicative inverse of a group element.
  /// Inversion is only defined for _invertible_ group
  /// elements.
  fn invert(&self) -> Self;


  /// Test for an _invertible_ group element.
  fn is_invertible(&self) -> bool;


  /// The multiplicative "division" of two group elements.
  fn div(&self, other: &Self) -> Self {
    self.mul(&other.invert())
  }


  /// Numerically test the left axiom of inversion.
  fn axiom_left_invert(&self, eps: &Self::Error) -> bool {
    self.invert().mul(self).num_eq(&Self::one(), eps)
  }


  /// Numerically test the right axiom of inversion.
  fn axiom_right_invert(&self, eps: &Self::Error) -> bool {
    self.mul(&self.invert()).num_eq(&Self::one(), eps)
  }
}


///
/// Trait implementation macro for floating point types.
///
/// A macro used to avoid writing repetitive, boilerplate
/// `NumMulGroup` implementations for built-in signed floating point
/// types.  Probably not needed if Rust had a `Float` super-trait.
///
macro_rules! float_num_mul_group {
  ($type:ty) => {
    impl NumMulGroup for $type {
      
      /// Inversion is just floating point inversion.
      fn invert(&self) -> Self {
        1.0 / *self
      }

      /// Non-zero elements are invertible.
      fn is_invertible(&self) -> bool {
        *self != 0.0
      }
    }
  };

  ($type:ty, $($others:ty),+) => {
    float_num_mul_group! {$type}
    float_num_mul_group! {$($others),+}
  };
}


// Numeric multiplicative group floating point types.
float_num_mul_group! {
  f32, f64
}


///
/// 0-tuples form a multiplicative group.
///
impl MulGroup for () {

  /// Inverted value can only be constant `()`.
  fn invert(&self) -> Self {
    ()
  }

  /// The only value is invertible.
  fn is_invertible(&self) -> bool {
    true
  }
}


///
/// 1-tuples form a multiplicative group if their items form a
/// multiplicative group.
///
impl<A: MulGroup> MulGroup for (A,) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), )
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible()
  }  
}


///
/// 1-tuples form a numeric multiplicative group if their
/// corresponding items form numeric multiplicative groups.
///
impl<A: NumMulGroup> NumMulGroup for (A,) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), )
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible()
  }  
}


///
/// 2-tuples form a multiplicative group if their items form a
/// multiplicative group.
///
impl<A: MulGroup, B: MulGroup> MulGroup for (A, B) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), self.1.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible() && self.1.is_invertible()
  }  
}


///
/// Homogeneous 2-tuples form a numeric multiplicative group if
/// their corresponding items form numeric multiplicative groups. We
/// can only implement homogeneous tuples since numeric comparisons
/// require a single numeric error type.
///
impl<A: NumMulGroup> NumMulGroup for (A, A) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), self.1.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible() && self.1.is_invertible()
  }  
}


///
/// 3-tuples form a multiplicative group if their items form a
/// multiplicative group.
///
impl<A: MulGroup, B: MulGroup, C: MulGroup> MulGroup for (A, B, C) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    let (a, b, c) = self;

    (a.invert(), b.invert(), c.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    let (a, b, c) = self;
    
    a.is_invertible() && b.is_invertible() && c.is_invertible()
  }  
}


///
/// Homogeneous 3-tuples form a numeric multiplicative group if
/// their corresponding items form numeric multiplicative groups. We
/// can only implement homogeneous tuples since numeric comparisons
/// require a single numeric error type.
///
impl<A: NumMulGroup> NumMulGroup for (A, A, A) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    let (a, b, c) = self;

    (a.invert(), b.invert(), c.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    let (a, b, c) = self;
    
    a.is_invertible() && b.is_invertible() && c.is_invertible()
  }  
}


// Module unit tests are in a separate file.
#[cfg(test)]
#[path = "mul_group_test.rs"]
mod mul_group_test;