1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! Type-Level Arithmetic in Rust (tylar).

use std::marker::PhantomData;

/// Basic trait implemented by all number types.
pub trait NumType: Into<i64> + Into<i32> + Into<i16> + Into<i8> + Into<isize> {
    /// Creates a new instance of this number type, which is actually a no-op, since
    /// number types are zero-sized. Instances are useful, however, to be converted
    /// into actual integer values, using implementations of the `Into` trait.
    #[inline(always)] fn new() -> Self;
}

/// Marker trait for positive numbers (including zero).
pub trait PosType: NumType + Into<u64> + Into<u32> + Into<u16> + Into<u8> + Into<usize> {}

/// Marker trait for negative numbers (including zero).
pub trait NegType: NumType {}

/// The number type for zero (0).
#[allow(dead_code)]
#[derive(Copy,Clone,PartialEq,Eq,PartialOrd,Ord)]
pub struct Zero;

/// The successor of `N`, i.e. a positive number.
#[allow(dead_code)]
#[derive(Copy,Clone,PartialEq,Eq,PartialOrd,Ord)]
pub struct Succ<N> {
    phantom: PhantomData<N>
}

/// The predecessor of `N`, i.e. a negative number.
#[allow(dead_code)]
#[derive(Copy,Clone,PartialEq,Eq,PartialOrd,Ord)]
pub struct Pred<N> {
    phantom: PhantomData<N>
}

impl NumType for Zero {
    #[inline(always)] fn new() -> Self { Zero }
}

impl PosType for Zero {}
impl NegType for Zero {}

impl<N: NumType> NumType for Succ<N> {
    #[inline(always)] fn new() -> Self { Succ { phantom: PhantomData } }
}

impl<N: NumType> NumType for Pred<N> {
    #[inline(always)] fn new() -> Self { Pred { phantom: PhantomData } }
}

impl<N: PosType> PosType for Succ<N> {}
impl<N: NegType> NegType for Pred<N> {}

macro_rules! impl_into_signed {
    ($($ity:ty)+) => ($(
        impl<N: NumType> Into<$ity> for Succ<N> {
            #[inline(always)] fn into(self) -> $ity { Into::<$ity>::into(N::new()) + 1 }
        }

        impl<N: NumType> Into<$ity> for Pred<N> {
            #[inline(always)] fn into(self) -> $ity { Into::<$ity>::into(N::new()) - 1 }
        }

        impl Into<$ity> for Zero {
            #[inline(always)] fn into(self) -> $ity { 0 }
        }
    )+)
}

macro_rules! impl_into_unsigned {
    ($($ity:ty)+) => ($(
        impl<N: PosType> Into<$ity> for Succ<N> {
            #[inline(always)] fn into(self) -> $ity { Into::<$ity>::into(N::new()) + 1 }
        }

        impl Into<$ity> for Zero {
            #[inline(always)] fn into(self) -> $ity { 0 }
        }
    )+)
}

impl_into_signed!(i64 i32 i16 i8 isize);
impl_into_unsigned!(u64 u32 u16 u8 usize);

/// Negation of number types.
pub trait Neg: NumType {
    /// Result of the operation, i.e. `Out` = –`Self`.
    type Out: NumType;
}
impl Neg for Zero { type Out = Zero; }
impl<A: PosType, B: NegType> Neg for Succ<A> where A: Neg<Out=B> { type Out = Pred<B>; }
impl<A: NegType, B: PosType> Neg for Pred<A> where A: Neg<Out=B> { type Out = Succ<B>; }

/// Incrementation of number types.
pub trait Incr: NumType {
    /// Result of the operation, i.e. `Out` = `Self` + 1.
    type Out: NumType;
}
impl Incr for Zero { type Out = Succ<Zero>; }
impl<A: PosType> Incr for Succ<A> { type Out = Succ<Succ<A>>; }
impl<A: NegType> Incr for Pred<A> { type Out = A; }

/// Decrementation of number types.
pub trait Decr: NumType {
    /// Result of the operation, i.e. `Out` = `Self` – 1.
    type Out: NumType;
}
impl Decr for Zero { type Out = Pred<Zero>; }
impl<A: PosType> Decr for Succ<A> { type Out = A; }
impl<A: NegType> Decr for Pred<A> { type Out = Pred<Pred<A>>; }

/// Addition of number types.
pub trait Add<RHS>: NumType {
    /// Result of the operation, i.e. `Out` = `Self` + `RHS`.
    type Out: NumType;
}
impl<RHS: NumType> Add<RHS> for Zero { type Out = RHS; }
impl<A: PosType, RHS, B: NumType> Add<RHS> for Succ<A> where RHS: Incr<Out=B>, A: Add<B>  { type Out = A::Out; }
impl<A: NegType, RHS, B: NumType> Add<RHS> for Pred<A> where RHS: Decr<Out=B>, A: Add<B>  { type Out = A::Out; }

/// Subtraction of number types.
pub trait Sub<RHS>: NumType {
    /// Result of the operation, i.e. `Out` = `Self` – `RHS`.
    type Out: NumType;
}
impl<A, RHS, B: NumType> Sub<RHS> for A where RHS: Neg<Out=B>, A: Add<B> { type Out = A::Out; }

/// Halving of number types.
/// `Div<_,P2>` could be used instead of this, but `Div` stresses the typechecker more
/// than `Halve`, so that `Halve` can be used with larger numbers without running into
/// the recursion limit.
pub trait Halve: NumType {
    /// Result of the operation, i.e. `Out` = `Self` / 2.
    type Out: NumType;
}
impl Halve for Zero { type Out = Zero; }
impl<A: PosType, B: NumType> Halve for Succ<Succ<A>> where A: Halve<Out=B>  { type Out = Succ<B>; }
impl<A: NegType, B: NumType> Halve for Pred<Pred<A>> where A: Halve<Out=B>  { type Out = Pred<B>; }

/// Subtraction of number types.
pub trait Mul<RHS>: NumType {
    /// Result of the operation, i.e. `Out` = `Self` * `RHS`.
    type Out: NumType;
}
impl<N: NumType> Mul<N> for Zero { type Out = Zero; }
impl<A: PosType, RHS, B: NumType> Mul<RHS> for Succ<A> where A: Mul<RHS, Out=B>, RHS: Add<B> { type Out = RHS::Out; }
impl<A: NegType, RHS, B, C: NumType> Mul<RHS> for Pred<A> where A: Mul<RHS, Out=C>, RHS: Neg<Out=B>, B: Add<C> { type Out = B::Out; }

/// Division of number types.
pub trait Div<RHS>: NumType {
    /// Result of the operation, i.e. `Out` = `Self` / `RHS`.
    type Out: NumType;
}
impl<A: PosType> Div<Succ<A>> for Zero { type Out = Zero; }
impl<A: NegType> Div<Pred<A>> for Zero { type Out = Zero; }
impl<A: NumType, B: NumType, C: NumType> Div<Succ<B>> for Succ<A> where A: Sub<B, Out=C>, C: Div<Succ<B>> { type Out = Succ<C::Out>; }
impl<N: NegType, NN: NegType, P: PosType, PP: PosType> Div<Pred<NN>> for Pred<N>
    where N: Neg<Out=P>, NN: Neg<Out=PP>, Succ<P>: Div<Succ<PP>> { type Out = <Succ<P> as Div<Succ<PP>>>::Out; }
impl<P: NumType, N: NegType, PP: NumType, PPP: NumType> Div<Pred<N>> for Succ<P>
    where N: Neg<Out=PP>, Succ<P>: Div<Succ<PP>, Out=Succ<PPP>>, Succ<PPP>: Neg { type Out = <Succ<PPP> as Neg>::Out; }
impl<P: NumType, N: NegType, PP: NumType, PPP: NumType> Div<Succ<P>> for Pred<N>
    where N: Neg<Out=PP>, Succ<PP>: Div<Succ<P>, Out=Succ<PPP>>, Succ<PPP>: Neg { type Out = <Succ<PPP> as Neg>::Out; }

/// Shorthand for the number 1 (the first successor of zero).
pub type P1 = Succ<Zero>;
/// Shorthand for the number 2 (the second successor of zero).
pub type P2 = Succ<P1>;
/// Shorthand for the number 3 (the third successor of zero).
pub type P3 = Succ<P2>;
/// Shorthand for the number 4 (the fourth successor of zero).
pub type P4 = Succ<P3>;
/// Shorthand for the number 5 (the fifth successor of zero).
pub type P5 = Succ<P4>;
/// Shorthand for the number 6 (the sixth successor of zero).
pub type P6 = Succ<P5>;
/// Shorthand for the number 7 (the seventh successor of zero).
pub type P7 = Succ<P6>;
/// Shorthand for the number 8 (the eighth successor of zero).
pub type P8 = Succ<P7>;
/// Shorthand for the number 9 (the nineth successor of zero).
pub type P9 = Succ<P8>;

/// Shorthand for the number –1 (the first predecessor of zero).
pub type N1 = Pred<Zero>;    
/// Shorthand for the number –2 (the second predecessor of zero).
pub type N2 = Pred<N1>;      
/// Shorthand for the number –3 (the third predecessor of zero).
pub type N3 = Pred<N2>;      
/// Shorthand for the number –4 (the fourth predecessor of zero).
pub type N4 = Pred<N3>;      
/// Shorthand for the number –5 (the fifth predecessor of zero).
pub type N5 = Pred<N4>;      
/// Shorthand for the number –6 (the sixth predecessor of zero).
pub type N6 = Pred<N5>;      
/// Shorthand for the number –7 (the seventh predecessor of zero).
pub type N7 = Pred<N6>;      
/// Shorthand for the number –8 (the eight predecessor of zero).
pub type N8 = Pred<N7>;     
/// Shorthand for the number –9 (the ninth predecessor of zero).
pub type N9 = Pred<N8>;

type Plus5<N> = Succ<Succ<Succ<Succ<Succ<N>>>>>;
type Plus10<N> = Plus5<Plus5<N>>;
type Plus50<N> = Plus10<Plus10<Plus10<Plus10<Plus10<N>>>>>;

#[test]
fn zero_sized() {
    use std::mem::size_of;
    assert_eq!(size_of::<Zero>(), 0);
    assert_eq!(size_of::<P1>(), 0);
    assert_eq!(size_of::<N1>(), 0);
    assert_eq!(size_of::<Plus50<Zero>>(), 0);
}

#[test]
fn into_number() {
    assert_eq!(0, Zero::new().into());
    assert_eq!(-3, N3::new().into());
    assert_eq!(2, P2::new().into());
    assert_eq!(2i8, P2::new().into());
    assert_eq!(2u64, P2::new().into());
    assert_eq!(2u8, P2::new().into());
    
    // 63 seems to be the maximal nesting depth acceptable to the compiler
    type P63 = Plus10<Plus50<P3>>;
    assert_eq!(63, P63::new().into());
}

#[test]
fn operations() {
    fn neg<A: NumType, Out: NumType>() -> i32 where A: Neg<Out=Out> {
        Out::new().into()
    }
    
    fn add<A: NumType, B: NumType, Out: NumType>() -> i32 where A: Add<B, Out=Out> {
        Out::new().into()
    }
    
    fn sub<A: NumType, B: NumType, Out: NumType>() -> i32 where A: Sub<B, Out=Out> {
        Out::new().into()
    }
    
    fn halve<A: NumType, Out: NumType>() -> i32 where A: Halve<Out=Out> {
        Out::new().into()
    }
    
    assert_eq!(-5, neg::<P5,_>());
    assert_eq!( 5, neg::<N5,_>());
    assert_eq!( 0, neg::<Zero,_>()); 
    
    assert_eq!( 5, add::<P2,P3,_>());
    assert_eq!(-1, sub::<P2,P3,_>());
    assert_eq!( 2, halve::<P4,_>());
    
    assert_eq!(-25, neg::<Plus5<Plus10<Plus10<Zero>>>,_>());
    assert_eq!( 45, sub::<Plus50<Zero>, P5,_>());
    assert_eq!( 50, halve::<Plus50<Plus50<Zero>>,_>());
}

#[test]
fn division() {
    fn div<A: NumType, B: NumType, Out: NumType>() -> i32 where A: Div<B, Out=Out> {
        Out::new().into()
    }
    
    assert_eq!(0, div::<Zero,P1,_>());
    
    assert_eq!(1, div::<P4,P4,_>());
    assert_eq!(2, div::<P4,P2,_>());
    assert_eq!(4, div::<P4,P1,_>());
    
    assert_eq!(1, div::<N4,N4,_>());
    assert_eq!(2, div::<N4,N2,_>());
    assert_eq!(4, div::<N4,N1,_>());
    
    assert_eq!(-1, div::<N4,P4,_>());
    assert_eq!(-2, div::<N4,P2,_>());
    assert_eq!(-4, div::<N4,P1,_>());
    
    assert_eq!(-1, div::<P4,N4,_>());
    assert_eq!(-2, div::<P4,N2,_>());
    assert_eq!(-4, div::<P4,N1,_>());
    
    assert_eq!( 2, div::<Plus10<Plus10<Zero>>,Plus10<Zero>,_>());
    assert_eq!(10, div::<Plus10<Plus10<Zero>>,P2,_>());
    assert_eq!( 4, div::<Plus10<Plus10<Zero>>,P5,_>());
}

#[test]
fn multiplication() {
    
    fn mul<A: NumType, B: NumType, Out: NumType>() -> i32 where A: Mul<B, Out=Out> {
        Out::new().into()
    }
    
    assert_eq!(0, mul::<Zero,Zero,_>());
    
    assert_eq!(0, mul::<P1,Zero,_>());
    assert_eq!(0, mul::<Zero,P1,_>());
    
    assert_eq!(1, mul::<P1,P1,_>());
    assert_eq!(2, mul::<P2,P1,_>());
    assert_eq!(2, mul::<P1,P2,_>());
    assert_eq!(4, mul::<P2,P2,_>());
    
    assert_eq!(-1, mul::<P1,N1,_>());
    assert_eq!(-2, mul::<P2,N1,_>());
    assert_eq!(-2, mul::<P1,N2,_>());
    assert_eq!(-4, mul::<P2,N2,_>());
    
    assert_eq!(-1, mul::<N1,P1,_>());
    assert_eq!(-2, mul::<N2,P1,_>());
    assert_eq!(-2, mul::<N1,P2,_>());
    assert_eq!(-4, mul::<N2,P2,_>());
    
    assert_eq!(1, mul::<N1,N1,_>());
    assert_eq!(2, mul::<N2,N1,_>());
    assert_eq!(2, mul::<N1,N2,_>());
    assert_eq!(4, mul::<N2,N2,_>());
    
    assert_eq!(25, mul::<P5,P5,_>());
    assert_eq!(25, mul::<N5,N5,_>());
}