1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
#![cfg_attr(not(feature = "use_std"), no_std)]
#![cfg_attr(feature = "pattern", feature(pattern))]

//!
//! Fast substring search for strings and byte strings, using the [two-way algorithm][tw].
//! 
//! This is the same code as is included in Rust's libstd that powers
//! `str::find(&str)`, but here it is exposed with some improvements:
//! 
//! - Available for byte string searches using ``&[u8]``
//! - Having an optional SSE4.2 accelerated version (if detected at runtime) which is even faster.
//!   Runtime detection requires the default std feature.
//! - Using `memchr` for the single byte case, which is ultra fast.
//! 
//! [tw]: http://www-igm.univ-mlv.fr/~lecroq/string/node26.html

#[cfg(not(feature = "use_std"))]
extern crate core as std;

use std::cmp;
use std::usize;

extern crate memchr;

mod tw;
#[cfg(all(feature="benchmarks", any(target_arch = "x86", target_arch = "x86_64")))]
pub mod pcmp;
#[cfg(all(not(feature="benchmarks"), any(target_arch = "x86", target_arch = "x86_64")))]
mod pcmp;

#[cfg(feature="benchmarks")]
pub mod bmh;

#[cfg(feature = "pattern")]
use std::str::pattern::{
    Pattern,
    Searcher,
    ReverseSearcher,
    SearchStep,
};

/// `find_str` finds the first ocurrence of `pattern` in the `text`.
///
/// Uses the SSE42 version if it is available at runtime.
#[inline]
pub fn find_str(text: &str, pattern: &str) -> Option<usize> {
    find_bytes(text.as_bytes(), pattern.as_bytes())
}

/// `find_bytes` finds the first ocurrence of `pattern` in the `text`.
///
/// Uses the SSE42 version if it is available at runtime.
pub fn find_bytes(text: &[u8], pattern: &[u8]) -> Option<usize> {
    if pattern.is_empty() {
        Some(0)
    } else if text.len() < pattern.len() {
        return None;
    } else if pattern.len() == 1 {
        memchr::memchr(pattern[0], text)
    } else {
        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
            let compile_time_disable = option_env!("TWOWAY_TEST_DISABLE_PCMP")
                .map(|s| !s.is_empty())
                .unwrap_or(false);
            if !compile_time_disable && pcmp::is_supported() {
                return unsafe { pcmp::find_inner(text, pattern) };
            }
        }
        let mut searcher = TwoWaySearcher::new(pattern, text.len());
        let is_long = searcher.memory == usize::MAX;
        // write out `true` and `false` cases to encourage the compiler
        // to specialize the two cases separately.
        if is_long {
            searcher.next::<MatchOnly>(text, pattern, true).map(|t| t.0)
        } else {
            searcher.next::<MatchOnly>(text, pattern, false).map(|t| t.0)
        }
    }
}

/// `rfind_str` finds the last ocurrence of `pattern` in the `text`
/// and returns the index of the start of the match.
///
/// As of this writing, this function uses the two way algorithm
/// in pure rust (with no SSE4.2 support).
#[inline]
pub fn rfind_str(text: &str, pattern: &str) -> Option<usize> {
    rfind_bytes(text.as_bytes(), pattern.as_bytes())
}

/// `rfind_bytes` finds the last ocurrence of `pattern` in the `text`,
/// and returns the index of the start of the match.
///
/// As of this writing, this function uses the two way algorithm
/// in pure rust (with no SSE4.2 support).
pub fn rfind_bytes(text: &[u8], pattern: &[u8]) -> Option<usize> {
    if pattern.is_empty() {
        Some(text.len())
    } else if pattern.len() == 1 {
        memchr::memrchr(pattern[0], text)
    } else {
        let mut searcher = TwoWaySearcher::new(pattern, text.len());
        let is_long = searcher.memory == usize::MAX;
        // write out `true` and `false` cases to encourage the compiler
        // to specialize the two cases separately.
        if is_long {
            searcher.next_back::<MatchOnly>(text, pattern, true).map(|t| t.0)
        } else {
            searcher.next_back::<MatchOnly>(text, pattern, false).map(|t| t.0)
        }
    }
}


/// Dummy wrapper for &str
#[doc(hidden)]
pub struct Str<'a>(pub &'a str);

#[cfg(feature = "pattern")]
/// Non-allocating substring search.
///
/// Will handle the pattern `""` as returning empty matches at each character
/// boundary.
impl<'a, 'b> Pattern<'a> for Str<'b> {
    type Searcher = StrSearcher<'a, 'b>;

    #[inline]
    fn into_searcher(self, haystack: &'a str) -> StrSearcher<'a, 'b> {
        StrSearcher::new(haystack, self.0)
    }

    /// Checks whether the pattern matches at the front of the haystack
    #[inline]
    fn is_prefix_of(self, haystack: &'a str) -> bool {
        let self_ = self.0;
        haystack.is_char_boundary(self_.len()) &&
            self_ == &haystack[..self_.len()]
    }

    /// Checks whether the pattern matches at the back of the haystack
    #[inline]
    fn is_suffix_of(self, haystack: &'a str) -> bool {
        let self_ = self.0;
        self_.len() <= haystack.len() &&
            haystack.is_char_boundary(haystack.len() - self_.len()) &&
            self_ == &haystack[haystack.len() - self_.len()..]
    }

}

#[derive(Clone, Debug)]
#[doc(hidden)]
/// Associated type for `<&str as Pattern<'a>>::Searcher`.
pub struct StrSearcher<'a, 'b> {
    haystack: &'a str,
    needle: &'b str,

    searcher: StrSearcherImpl,
}

#[derive(Clone, Debug)]
enum StrSearcherImpl {
    Empty(EmptyNeedle),
    TwoWay(TwoWaySearcher),
}

#[derive(Clone, Debug)]
struct EmptyNeedle {
    position: usize,
    end: usize,
    is_match_fw: bool,
    is_match_bw: bool,
}

impl<'a, 'b> StrSearcher<'a, 'b> {
    pub fn new(haystack: &'a str, needle: &'b str) -> StrSearcher<'a, 'b> {
        if needle.is_empty() {
            StrSearcher {
                haystack: haystack,
                needle: needle,
                searcher: StrSearcherImpl::Empty(EmptyNeedle {
                    position: 0,
                    end: haystack.len(),
                    is_match_fw: true,
                    is_match_bw: true,
                }),
            }
        } else {
            StrSearcher {
                haystack: haystack,
                needle: needle,
                searcher: StrSearcherImpl::TwoWay(
                    TwoWaySearcher::new(needle.as_bytes(), haystack.len())
                ),
            }
        }
    }
}

#[cfg(feature = "pattern")]
unsafe impl<'a, 'b> Searcher<'a> for StrSearcher<'a, 'b> {
    fn haystack(&self) -> &'a str { self.haystack }

    #[inline]
    fn next(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                // empty needle rejects every char and matches every empty string between them
                let is_match = searcher.is_match_fw;
                searcher.is_match_fw = !searcher.is_match_fw;
                let pos = searcher.position;
                match self.haystack[pos..].chars().next() {
                    _ if is_match => SearchStep::Match(pos, pos),
                    None => SearchStep::Done,
                    Some(ch) => {
                        searcher.position += ch.len_utf8();
                        SearchStep::Reject(pos, searcher.position)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                // TwoWaySearcher produces valid *Match* indices that split at char boundaries
                // as long as it does correct matching and that haystack and needle are
                // valid UTF-8
                // *Rejects* from the algorithm can fall on any indices, but we will walk them
                // manually to the next character boundary, so that they are utf-8 safe.
                if searcher.position == self.haystack.len() {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next::<RejectAndMatch>(self.haystack.as_bytes(),
                                                      self.needle.as_bytes(),
                                                      is_long)
                {
                    SearchStep::Reject(a, mut b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(b) {
                            b += 1;
                        }
                        searcher.position = cmp::max(b, searcher.position);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline(always)]
    fn next_match(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => {
                loop {
                    match self.next() {
                        SearchStep::Match(a, b) => return Some((a, b)),
                        SearchStep::Done => return None,
                        SearchStep::Reject(..) => { }
                    }
                }
            }

            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false` cases to encourage the compiler
                // to specialize the two cases separately.
                if is_long {
                    searcher.next::<MatchOnly>(self.haystack.as_bytes(),
                                               self.needle.as_bytes(),
                                               true)
                } else {
                    searcher.next::<MatchOnly>(self.haystack.as_bytes(),
                                               self.needle.as_bytes(),
                                               false)
                }
            }
        }
    }
}

#[cfg(feature = "pattern")]
unsafe impl<'a, 'b> ReverseSearcher<'a> for StrSearcher<'a, 'b> {
    #[inline]
    fn next_back(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                let is_match = searcher.is_match_bw;
                searcher.is_match_bw = !searcher.is_match_bw;
                let end = searcher.end;
                match self.haystack[..end].chars().next_back() {
                    _ if is_match => SearchStep::Match(end, end),
                    None => SearchStep::Done,
                    Some(ch) => {
                        searcher.end -= ch.len_utf8();
                        SearchStep::Reject(searcher.end, end)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                if searcher.end == 0 {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next_back::<RejectAndMatch>(self.haystack.as_bytes(),
                                                           self.needle.as_bytes(),
                                                           is_long)
                {
                    SearchStep::Reject(mut a, b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(a) {
                            a -= 1;
                        }
                        searcher.end = cmp::min(a, searcher.end);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline]
    fn next_match_back(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => {
                loop {
                    match self.next_back() {
                        SearchStep::Match(a, b) => return Some((a, b)),
                        SearchStep::Done => return None,
                        SearchStep::Reject(..) => { }
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false`, like `next_match`
                if is_long {
                    searcher.next_back::<MatchOnly>(self.haystack.as_bytes(),
                                                    self.needle.as_bytes(),
                                                    true)
                } else {
                    searcher.next_back::<MatchOnly>(self.haystack.as_bytes(),
                                                    self.needle.as_bytes(),
                                                    false)
                }
            }
        }
    }
}

/// The internal state of the two-way substring search algorithm.
#[derive(Clone, Debug)]
#[doc(hidden)]
pub struct TwoWaySearcher {
    // constants
    /// critical factorization index
    crit_pos: usize,
    /// critical factorization index for reversed needle
    crit_pos_back: usize,
    period: usize,
    /// `byteset` is an extension (not part of the two way algorithm);
    /// it's a 64-bit "fingerprint" where each set bit `j` corresponds
    /// to a (byte & 63) == j present in the needle.
    byteset: u64,

    // variables
    position: usize,
    end: usize,
    /// index into needle before which we have already matched
    memory: usize,
    /// index into needle after which we have already matched
    memory_back: usize,
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e. i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

    If the period is short, compute another factorization x = u' v' to use
    for reverse search, chosen instead so that |v'| < period(x).

*/
impl TwoWaySearcher {
    pub fn new(needle: &[u8], end: usize) -> TwoWaySearcher {
        let (crit_pos, period) = TwoWaySearcher::crit_params(needle);

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if &needle[..crit_pos] == &needle[period.. period + crit_pos] {
            // short period case -- the period is exact
            // compute a separate critical factorization for the reversed needle
            // x = u' v' where |v'| < period(x).
            //
            // This is sped up by the period being known already.
            // Note that a case like x = "acba" may be factored exactly forwards
            // (crit_pos = 1, period = 3) while being factored with approximate
            // period in reverse (crit_pos = 2, period = 2). We use the given
            // reverse factorization but keep the exact period.
            let crit_pos_back = needle.len() - cmp::max(
                TwoWaySearcher::reverse_maximal_suffix(needle, period, false),
                TwoWaySearcher::reverse_maximal_suffix(needle, period, true));

            TwoWaySearcher {
                crit_pos: crit_pos,
                crit_pos_back: crit_pos_back,
                period: period,
                byteset: Self::byteset_create(&needle[..period]),

                position: 0,
                end: end,
                memory: 0,
                memory_back: needle.len(),
            }
        } else {
            // long period case -- we have an approximation to the actual period,
            // and don't use memorization.
            //
            // Approximate the period by lower bound max(|u|, |v|) + 1.
            // The critical factorization is efficient to use for both forward and
            // reverse search.

            TwoWaySearcher {
                crit_pos: crit_pos,
                crit_pos_back: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
                byteset: Self::byteset_create(needle),

                position: 0,
                end: end,
                memory: usize::MAX, // Dummy value to signify that the period is long
                memory_back: usize::MAX,
            }
        }
    }

    /// Return the zero-based critical position and period of the provided needle.
    ///
    /// The returned period is incorrect when the actual period is "long." In
    /// that case the approximation must be computed separately.
    #[inline(always)]
    fn crit_params(needle: &[u8]) -> (usize, usize) {
        let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);

        if crit_pos_false > crit_pos_true {
            (crit_pos_false, period_false)
        } else {
            (crit_pos_true, period_true)
        }
    }

    #[inline]
    fn byteset_create(bytes: &[u8]) -> u64 {
        bytes.iter().fold(0, |a, &b| (1 << (b & 0x3f)) | a)
    }

    #[inline(always)]
    fn byteset_contains(&self, byte: u8) -> bool {
        (self.byteset >> ((byte & 0x3f) as usize)) & 1 != 0
    }

    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline(always)]
    fn next<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool)
        -> S::Output
        where S: TwoWayStrategy
    {
        // `next()` uses `self.position` as its cursor
        let old_pos = self.position;
        let needle_last = needle.len() - 1;
        'search: loop {
            // Check that we have room to search in
            // position + needle_last can not overflow if we assume slices
            // are bounded by isize's range.
            let tail_byte = match haystack.get(self.position + needle_last) {
                Some(&b) => b,
                None => {
                    self.position = haystack.len();
                    return S::rejecting(old_pos, self.position);
                }
            };

            if S::use_early_reject() && old_pos != self.position {
                return S::rejecting(old_pos, self.position);
            }

            // Quickly skip by large portions unrelated to our substring
            if !self.byteset_contains(tail_byte) {
                self.position += needle.len();
                if !long_period {
                    self.memory = 0;
                }
                continue 'search;
            }

            // See if the right part of the needle matches
            let start = if long_period { self.crit_pos }
                        else { cmp::max(self.crit_pos, self.memory) };
            for i in start..needle.len() {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in (start..self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;

            // Note: add self.period instead of needle.len() to have overlapping matches
            self.position += needle.len();
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for overlapping matches
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Follows the ideas in `next()`.
    //
    // The definitions are symmetrical, with period(x) = period(reverse(x))
    // and local_period(u, v) = local_period(reverse(v), reverse(u)), so if (u, v)
    // is a critical factorization, so is (reverse(v), reverse(u)).
    //
    // For the reverse case we have computed a critical factorization x = u' v'
    // (field `crit_pos_back`). We need |u| < period(x) for the forward case and
    // thus |v'| < period(x) for the reverse.
    //
    // To search in reverse through the haystack, we search forward through
    // a reversed haystack with a reversed needle, matching first u' and then v'.
    #[inline]
    fn next_back<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool)
        -> S::Output
        where S: TwoWayStrategy
    {
        // `next_back()` uses `self.end` as its cursor -- so that `next()` and `next_back()`
        // are independent.
        let old_end = self.end;
        'search: loop {
            // Check that we have room to search in
            // end - needle.len() will wrap around when there is no more room,
            // but due to slice length limits it can never wrap all the way back
            // into the length of haystack.
            let front_byte = match haystack.get(self.end.wrapping_sub(needle.len())) {
                Some(&b) => b,
                None => {
                    self.end = 0;
                    return S::rejecting(0, old_end);
                }
            };

            if S::use_early_reject() && old_end != self.end {
                return S::rejecting(self.end, old_end);
            }

            // Quickly skip by large portions unrelated to our substring
            if !self.byteset_contains(front_byte) {
                self.end -= needle.len();
                if !long_period {
                    self.memory_back = needle.len();
                }
                continue 'search;
            }

            // See if the left part of the needle matches
            let crit = if long_period { self.crit_pos_back }
                       else { cmp::min(self.crit_pos_back, self.memory_back) };
            for i in (0..crit).rev() {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.crit_pos_back - i;
                    if !long_period {
                        self.memory_back = needle.len();
                    }
                    continue 'search;
                }
            }

            // See if the right part of the needle matches
            let needle_end = if long_period { needle.len() }
                             else { self.memory_back };
            for i in self.crit_pos_back..needle_end {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.period;
                    if !long_period {
                        self.memory_back = self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.end - needle.len();
            // Note: sub self.period instead of needle.len() to have overlapping matches
            self.end -= needle.len();
            if !long_period {
                self.memory_back = needle.len();
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Compute the maximal suffix of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u, v) of `arr`.
    //
    // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the
    // period of v.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    #[inline]
    pub fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
                            // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper

        while let Some(&a) = arr.get(right + offset) {
            // `left` will be inbounds when `right` is.
            let b = arr[left + offset];
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        (left, period)
    }

    // Compute the maximal suffix of the reverse of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u', v') of `arr`.
    //
    // Returns `i` where `i` is the starting index of v', from the back;
    // returns immedately when a period of `known_period` is reached.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    pub fn reverse_maximal_suffix(arr: &[u8], known_period: usize,
                                  order_greater: bool) -> usize
    {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
                            // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper
        let n = arr.len();

        while right + offset < n {
            let a = arr[n - (1 + right + offset)];
            let b = arr[n - (1 + left + offset)];
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
            if period == known_period {
                break;
            }
        }
        debug_assert!(period <= known_period);
        left
    }
}

// TwoWayStrategy allows the algorithm to either skip non-matches as quickly
// as possible, or to work in a mode where it emits Rejects relatively quickly.
trait TwoWayStrategy {
    type Output;
    fn use_early_reject() -> bool;
    fn rejecting(usize, usize) -> Self::Output;
    fn matching(usize, usize) -> Self::Output;
}

/// Skip to match intervals as quickly as possible
enum MatchOnly { }

impl TwoWayStrategy for MatchOnly {
    type Output = Option<(usize, usize)>;

    #[inline]
    fn use_early_reject() -> bool { false }
    #[inline]
    fn rejecting(_a: usize, _b: usize) -> Self::Output { None }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output { Some((a, b)) }
}

#[cfg(feature = "pattern")]
/// Emit Rejects regularly
enum RejectAndMatch { }

#[cfg(feature = "pattern")]
impl TwoWayStrategy for RejectAndMatch {
    type Output = SearchStep;

    #[inline]
    fn use_early_reject() -> bool { true }
    #[inline]
    fn rejecting(a: usize, b: usize) -> Self::Output { SearchStep::Reject(a, b) }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output { SearchStep::Match(a, b) }
}


#[cfg(feature = "pattern")]
#[cfg(test)]
impl<'a, 'b> StrSearcher<'a, 'b> {
    fn twoway(&self) -> &TwoWaySearcher {
        match self.searcher {
            StrSearcherImpl::TwoWay(ref inner) => inner,
            _ => panic!("Not a TwoWaySearcher"),
        }
    }
}

#[cfg(feature = "pattern")]
#[test]
fn test_basic() {
    let t = StrSearcher::new("", "aab");
    println!("{:?}", t);
    let t = StrSearcher::new("", "abaaaba");
    println!("{:?}", t);
    let mut t = StrSearcher::new("GCATCGCAGAGAGTATACAGTACG", "GCAGAGAG");
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new("GCATCGCAGAGAGTATACAGTACG", "GCAGAGAG");
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new("banana", "nana");
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }
}

#[cfg(feature = "pattern")]
#[cfg(test)]
fn contains(hay: &str, n: &str) -> bool {
    let mut tws = StrSearcher::new(hay, n);
    loop {
        match tws.next() {
            SearchStep::Done => return false,
            SearchStep::Match(..) => return true,
            _ => { }
        }
    }
}

#[cfg(feature = "pattern")]
#[cfg(test)]
fn contains_rev(hay: &str, n: &str) -> bool {
    let mut tws = StrSearcher::new(hay, n);
    loop {
        match tws.next_back() {
            SearchStep::Done => return false,
            SearchStep::Match(..) => return true,
            rej => { println!("{:?}", rej); }
        }
    }
}


#[cfg(feature = "pattern")]
#[test]
fn test_contains() {
    let h = "";
    let n = "";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));

    let h = "BDC\0\0\0";
    let n = "BDC\u{0}";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));


    let h = "ADA\0";
    let n = "ADA";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));

    let h = "\u{0}\u{0}\u{0}\u{0}";
    let n = "\u{0}";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));
}

#[cfg(feature = "pattern")]
#[test]
fn test_rev_2() {
    let h = "BDC\0\0\0";
    let n = "BDC\u{0}";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    println!("{:?}", h.contains(&n));

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "aabaabx";
    let n = "aabaab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 2);
    assert_eq!(t.twoway().crit_pos_back, 5);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "abababac";
    let n = "ababab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 1);
    assert_eq!(t.twoway().crit_pos_back, 5);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "abababac";
    let n = "abab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "baabbbaabc";
    let n = "baabb";
    let t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 3);
    assert_eq!(t.twoway().crit_pos_back, 3);

    let h = "aabaaaabaabxx";
    let n = "aabaaaabaa";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "babbabax";
    let n = "babbab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 2);
    assert_eq!(t.twoway().crit_pos_back, 4);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "xacbaabcax";
    let n = "abca";
    let mut t = StrSearcher::new(h, n);
    assert_eq!(t.next_match_back(), Some((5, 9)));

    let h = "xacbaacbxxcba";
    let m = "acba";
    let mut s = StrSearcher::new(h, m);
    assert_eq!(s.next_match_back(), Some((1, 5)));
    assert_eq!(s.twoway().crit_pos, 1);
    assert_eq!(s.twoway().crit_pos_back, 2);
}

#[cfg(feature = "pattern")]
#[test]
fn test_rev_unicode() {
    let h = "ααααααβ";
    let n = "αβ";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new(h, n);
    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }
}

#[test]
fn maximal_suffix() {
    assert_eq!((2, 1), TwoWaySearcher::maximal_suffix(b"aab", false));
    assert_eq!((0, 3), TwoWaySearcher::maximal_suffix(b"aab", true));

    assert_eq!((0, 3), TwoWaySearcher::maximal_suffix(b"aabaa", true));
    assert_eq!((2, 3), TwoWaySearcher::maximal_suffix(b"aabaa", false));

    assert_eq!((0, 7), TwoWaySearcher::maximal_suffix(b"gcagagag", false));
    assert_eq!((2, 2), TwoWaySearcher::maximal_suffix(b"gcagagag", true));

    // both of these factorizations are critial factorizations
    assert_eq!((2, 2), TwoWaySearcher::maximal_suffix(b"banana", false));
    assert_eq!((1, 2), TwoWaySearcher::maximal_suffix(b"banana", true));
    assert_eq!((0, 6), TwoWaySearcher::maximal_suffix(b"zanana", false));
    assert_eq!((1, 2), TwoWaySearcher::maximal_suffix(b"zanana", true));
}

#[test]
fn maximal_suffix_verbose() {
    fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) {
        let mut left: usize = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        macro_rules! asstr {
            ($e:expr) => (::std::str::from_utf8($e).unwrap())
        }

        while let Some(&a) = arr.get(right + offset) {
            // `left` will be inbounds when `right` is.
            debug_assert!(left <= right);
            let b = unsafe { *arr.get_unchecked(left + offset) };
            println!("str={}, l={}, r={}, offset={}, p={}", asstr!(arr), left, right, offset, period);
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        println!("str={}, l={}, r={}, offset={}, p={} ==END==", asstr!(arr), left, right, offset, period);
        (left, period)
    }

    fn reverse_maximal_suffix(arr: &[u8], known_period: usize, order_greater: bool) -> usize {
        let n = arr.len();
        let mut left: usize = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        macro_rules! asstr {
            ($e:expr) => (::std::str::from_utf8($e).unwrap())
        }

        while right + offset < n {
            // `left` will be inbounds when `right` is.
            debug_assert!(left <= right);
            let a = unsafe { *arr.get_unchecked(n - (1 + right + offset)) };
            let b = unsafe { *arr.get_unchecked(n - (1 + left + offset)) };
            println!("str={}, l={}, r={}, offset={}, p={}", asstr!(arr), left, right, offset, period);
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
                if period == known_period {
                    break;
                }
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        println!("str={}, l={}, r={}, offset={}, p={} ==END==", asstr!(arr), left, right, offset, period);
        debug_assert!(period == known_period);
        left
    }

    assert_eq!((2, 2), maximal_suffix(b"banana", false));
    assert_eq!((1, 2), maximal_suffix(b"banana", true));
    assert_eq!((0, 7), maximal_suffix(b"gcagagag", false));
    assert_eq!((2, 2), maximal_suffix(b"gcagagag", true));
    assert_eq!((2, 1), maximal_suffix(b"bac", false));
    assert_eq!((1, 2), maximal_suffix(b"bac", true));
    assert_eq!((0, 9), maximal_suffix(b"baaaaaaaa", false));
    assert_eq!((1, 1), maximal_suffix(b"baaaaaaaa", true));

    assert_eq!((2, 3), maximal_suffix(b"babbabbab", false));
    assert_eq!((1, 3), maximal_suffix(b"babbabbab", true));

    assert_eq!(2, reverse_maximal_suffix(b"babbabbab", 3, false));
    assert_eq!(1, reverse_maximal_suffix(b"babbabbab", 3, true));

    assert_eq!((0, 2), maximal_suffix(b"bababa", false));
    assert_eq!((1, 2), maximal_suffix(b"bababa", true));

    assert_eq!(1, reverse_maximal_suffix(b"bababa", 2, false));
    assert_eq!(0, reverse_maximal_suffix(b"bababa", 2, true));

    // NOTE: returns "long period" case per = 2, which is an approximation
    assert_eq!((2, 2), maximal_suffix(b"abca", false));
    assert_eq!((0, 3), maximal_suffix(b"abca", true));

    assert_eq!((3, 2), maximal_suffix(b"abcda", false));
    assert_eq!((0, 4), maximal_suffix(b"abcda", true));

    // "aöa"
    assert_eq!((1, 3), maximal_suffix(b"acba", false));
    assert_eq!((0, 3), maximal_suffix(b"acba", true));
    //assert_eq!(2, reverse_maximal_suffix(b"acba", 3, false));
    //assert_eq!(0, reverse_maximal_suffix(b"acba", 3, true));
}

#[cfg(feature = "pattern")]
#[test]
fn test_find_rfind() {
    fn find(hay: &str, pat: &str) -> Option<usize> {
        let mut t = pat.into_searcher(hay);
        t.next_match().map(|(x, _)| x)
    }

    fn rfind(hay: &str, pat: &str) -> Option<usize> {
        let mut t = pat.into_searcher(hay);
        t.next_match_back().map(|(x, _)| x)
    }

    // find every substring -- assert that it finds it, or an earlier occurence.
    let string = "Việt Namacbaabcaabaaba";
    for (i, ci) in string.char_indices() {
        let ip = i + ci.len_utf8();
        for j in string[ip..].char_indices()
                             .map(|(i, _)| i)
                             .chain(Some(string.len() - ip))
        {
            let pat = &string[i..ip + j];
            assert!(match find(string, pat) {
                None => false,
                Some(x) => x <= i,
            });
            assert!(match rfind(string, pat) {
                None => false,
                Some(x) => x >= i,
            });
        }
    }
}