1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
use radians::{self, Radians};
use turtle_window::TurtleWindow;
use event::MouseButton;
use {Speed, Color, Event};

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum AngleUnit {
    Degrees,
    Radians,
}

impl AngleUnit {
    fn to_radians(&self, angle: Angle) -> Radians {
        match *self {
            AngleUnit::Degrees => Radians::from_degrees_value(angle),
            AngleUnit::Radians => Radians::from_radians_value(angle),
        }
    }

    fn to_angle(&self, angle: Radians) -> Angle {
        match *self {
            AngleUnit::Degrees => angle.to_degrees(),
            AngleUnit::Radians => angle.to_radians(),
        }
    }
}

/// A point in 2D space: [x, y]
///
/// ```rust
/// # extern crate turtle;
/// # use turtle::Point;
/// # fn main() {
/// let p: Point = [100., 120.];
/// // get x coordinate
/// let x = p[0];
/// assert_eq!(x, 100.);
/// // get y coordinate
/// let y = p[1];
/// assert_eq!(y, 120.);
/// # }
pub type Point = [f64; 2];

/// Any distance value
pub type Distance = f64;

/// An angle value without a unit
///
/// The unit of the angle represented by this value depends on what
/// unit the Turtle was set to when this angle was retrieved
pub type Angle = f64;

/// A turtle with a pen attached to its tail
pub struct Turtle {
    window: TurtleWindow,
    angle_unit: AngleUnit,
}

impl Turtle {
    /// Initialize a new Turtle instance
    pub fn new() -> Turtle {
        Turtle {
            window: TurtleWindow::new(),
            angle_unit: AngleUnit::Degrees,
        }
    }

    /// Returns the current speed of the turtle
    pub fn speed(&self) -> Speed {
        self.window.turtle().speed
    }

    /// Returns the turtle's current location (x, y)
    pub fn position(&self) -> Point {
        self.window.turtle().position
    }

    /// Returns the turtle's current heading
    ///
    /// Units are by default degrees, but can be set using the methods
    /// [`Turtle::use_degrees`](struct.Turtle.html#method.use_degrees) or
    /// [`Turtle::use_radians`](struct.Turtle.html#method.use_radians).
    pub fn heading(&self) -> Angle {
        let heading = self.window.turtle().heading;
        self.angle_unit.to_angle(heading)
    }

    /// Returns true if the turtle is visible
    pub fn is_visible(&self) -> bool {
        self.window.turtle().visible
    }

    /// Returns true if Angle values will be interpreted as degrees
    pub fn is_using_degrees(&self) -> bool {
        self.angle_unit == AngleUnit::Degrees
    }

    /// Returns true if Angle values will be interpreted as radians
    pub fn is_using_radians(&self) -> bool {
        self.angle_unit == AngleUnit::Radians
    }

    /// Return true if pen is down, false if it’s up.
    pub fn is_pen_down(&self) -> bool {
        self.window.drawing().pen.enabled
    }

    /// Returns the size (thickness) of the pen
    pub fn pen_size(&self) -> f64 {
        self.window.drawing().pen.thickness
    }

    /// Returns the color of the pen
    pub fn pen_color(&self) -> Color {
        self.window.drawing().pen.color
    }

    /// Returns the color of the background
    pub fn background_color(&self) -> Color {
        self.window.drawing().background
    }

    /// Returns the current fill color
    ///
    /// This will be used to fill the shape when `begin_fill()` and `end_fill()` are called.
    //TODO: Hyperlink begin_fill() and end_fill() methods to their docs
    pub fn fill_color(&self) -> Color {
        self.window.drawing().fill_color
    }

    /// Begin filling the shape drawn by the turtle's movements
    pub fn begin_fill(&mut self) {
        self.window.begin_fill();
    }

    /// Stop filling the shape drawn by the turtle's movements
    pub fn end_fill(&mut self) {
        self.window.end_fill();
    }

    /// Pull the pen down so that the turtle draws while moving
    pub fn pen_down(&mut self) {
        self.window.drawing_mut().pen.enabled = true;
    }

    /// Pick the pen up so that the turtle does not draw while moving
    pub fn pen_up(&mut self) {
        self.window.drawing_mut().pen.enabled = false;
    }

    /// Sets the thickness of the pen to the given size
    //TODO: Document this more like set_speed
    pub fn set_pen_size(&mut self, thickness: f64) {
        self.window.drawing_mut().pen.thickness = thickness;
    }

    /// Sets the color of the pen to the given color
    //TODO: Document this more like set_speed
    pub fn set_pen_color<C: Into<Color>>(&mut self, color: C) {
        self.window.drawing_mut().pen.color = color.into();
    }

    /// Sets the color of the background to the given color
    //TODO: Document this more like set_speed
    pub fn set_background_color<C: Into<Color>>(&mut self, color: C) {
        self.window.drawing_mut().background = color.into();
    }

    /// Sets the fill color to the given color
    ///
    /// **Note:** Only the fill color set **before** `begin_fill()` is called will be used to fill
    /// the shape.
    //TODO: Document this more like set_speed
    pub fn set_fill_color<C: Into<Color>>(&mut self, color: C) {
        self.window.drawing_mut().fill_color = color.into();
    }

    /// Set the turtle's movement speed to the given setting. This speed affects the animation of
    /// the turtle's movement and rotation.
    ///
    /// This method's types make it so that it can be called in a number of different ways:
    ///
    /// ```rust,no_run
    /// # extern crate turtle;
    /// # use turtle::*;
    /// # fn main() {
    /// # let mut turtle = Turtle::new();
    /// turtle.set_speed("normal");
    /// turtle.set_speed("fast");
    /// turtle.set_speed(2);
    /// turtle.set_speed(10);
    /// // Directly using a Speed variant works, but the methods above are usually more convenient.
    /// turtle.set_speed(Speed::Six);
    /// # }
    /// ```
    ///
    /// If input is a number greater than 10 or smaller than 1,
    /// speed is set to 0 (`Speed::Instant`). Strings are converted as follows:
    ///
    /// | String      | Value          |
    /// | ----------- | -------------- |
    /// | `"slowest"` | `Speed::One`     |
    /// | `"slow"`    | `Speed::Three`   |
    /// | `"normal"`  | `Speed::Six`     |
    /// | `"fast"`    | `Speed::Eight`   |
    /// | `"fastest"` | `Speed::Ten`     |
    /// | `"instant"` | `Speed::Instant` |
    ///
    /// Anything else will cause the program to `panic!` at runtime.
    ///
    /// ## Moving Instantly
    ///
    /// A speed of zero (`Speed::Instant`) results in no animation. The turtle moves instantly
    /// and turns instantly. This is very useful for moving the turtle from its "home" position
    /// before you start drawing. By setting the speed to instant, you don't have to wait for
    /// the turtle to move into position.
    ///
    /// ## Learning About Conversion Traits
    ///
    /// Using this method is an excellent way to learn about conversion
    /// traits `From` and `Into`. This method takes a *generic type* as its speed parameter. That type
    /// is specified to implement the `Into` trait for the type `Speed`. That means that *any* type
    /// that can be converted into a `Speed` can be passed to this method.
    ///
    /// We have implemented that trait for several types like strings and 32-bit integers so that
    /// those values can be passed into this method.
    /// Rather than calling this function and passing `Speed::Six` directly, you can use just `6`.
    /// Rust will then allow us to call `.into()` as provided by the `Into<Speed>` trait to get the
    /// corresponding `Speed` value.
    ///
    /// You can pass in strings, 32-bit integers, and even `Speed` enum variants because they all
    /// implement the `Into<Speed>` trait.
    pub fn set_speed<S: Into<Speed>>(&mut self, speed: S) {
        self.window.turtle_mut().speed = speed.into();
    }

    /// Makes the turtle invisible. The shell will not be shown, but drawings will continue.
    ///
    /// Useful for some complex drawings.
    pub fn hide(&mut self) {
        self.window.turtle_mut().visible = false;
    }

    /// Makes the turtle visible.
    pub fn show(&mut self) {
        self.window.turtle_mut().visible = true;
    }

    /// Change the angle unit to degrees.
    pub fn use_degrees(&mut self) {
        self.angle_unit = AngleUnit::Degrees;
    }

    /// Change the angle unit to radians.
    pub fn use_radians(&mut self) {
        self.angle_unit = AngleUnit::Radians;
    }

    /// Move the turtle forward by the given amount of `distance`.
    ///
    /// `distance` is given in "pixels" which are like really small turtle steps.
    /// `distance` can be negative in which case the turtle can move backward
    /// using this method.
    pub fn forward(&mut self, distance: Distance) {
        self.window.forward(distance);
    }

    /// Move the turtle backward by the given amount of `distance`.
    ///
    /// `distance` is given in "pixels" which are like really small turtle steps.
    /// `distance` can be negative in which case the turtle can move forwards
    /// using this method.
    pub fn backward(&mut self, distance: Distance) {
        // Moving backwards is essentially moving forwards with a negative distance
        self.window.forward(-distance);
    }

    /// Rotate the turtle right (clockwise) by the given angle.
    ///
    /// Units are by default degrees, but can be set using the methods
    /// [`Turtle::use_degrees`](struct.Turtle.html#method.use_degrees) or
    /// [`Turtle::use_radians`](struct.Turtle.html#method.use_radians).
    pub fn right(&mut self, angle: Angle) {
        let angle = self.angle_unit.to_radians(angle);
        self.window.rotate(angle, true);
    }

    /// Rotate the turtle left (counterclockwise) by the given angle.
    ///
    /// Units are by default degrees, but can be set using the methods
    /// [`Turtle::use_degrees`](struct.Turtle.html#method.use_degrees) or
    /// [`Turtle::use_radians`](struct.Turtle.html#method.use_radians).
    pub fn left(&mut self, angle: Angle) {
        let angle = self.angle_unit.to_radians(angle);
        self.window.rotate(angle, false);
    }

    /// Rotates the turtle to face the given coordinates.
    /// Coordinates are relative to the center of the window.
    ///
    /// If the coordinates are the same as the turtle's current position, no rotation takes place.
    /// Always rotates the least amount necessary in order to face the given point.
    ///
    /// ## UNSTABLE
    /// This feature is currently unstable and completely buggy. Do not use it until it is fixed.
    pub fn turn_towards(&mut self, target: Point) {
        let target_x = target[0];
        let target_y = target[1];

        let position = self.position();
        let x = position[0];
        let y = position[1];

        if (target_x - x).abs() < 0.1 && (target_y - y).abs() < 0.1 {
            return;
        }

        let heading = self.window.turtle().heading;

        let angle = (target_y - y).atan2(target_x - x);
        let angle = Radians::from_radians_value(angle);
        let angle = (angle - heading) % radians::TWO_PI;
        // Try to rotate as little as possible
        let angle = if angle.abs() > radians::PI {
            // Using signum to deal with negative angles properly
            angle.signum()*(radians::TWO_PI - angle.abs())
        }
        else {
            angle
        };
        self.window.rotate(angle, false);
    }

    /// Returns the next event (if any).
    //TODO: Example of usage with an event loop
    pub fn poll_event(&mut self) -> Option<Event> {
        self.window.poll_event()
    }

    /// Convenience function that waits for a click to occur before returning.
    ///
    /// Useful for when you want your program to wait for the user to click before continuing so
    /// that it doesn't start right away.
    pub fn wait_for_click(&mut self) {
        loop {
            if let Some(Event::MouseButtonReleased(MouseButton::Left)) = self.poll_event() {
                break;
            }
        }
    }
}