1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! Generate TypeScript interface/type declarations from rust structs.
//!
//! ## why?
//! When building a web application in rust, data structures have to be shared between backend and frontend.  
//! Using this library, you can easily generate TypeScript bindings to your rust structs & enums, so that you can keep your
//! types in one place.
//!
//! ts-rs might also come in handy when working with webassembly.
//!
//! ## how?
//! ts-rs exposes a single trait, `TS`.  
//! Using a derive macro, you can implement this trait for
//! your types.  
//! Then, you can use this trait to obtain the TypeScript bindings.
//! We recommend doing this in your tests. [see the example](https://github.com/Aleph-Alpha/ts-rs/blob/main/example/src/lib.rs)
//!
//! ## serde compatibility layer
//! With the `serde-compat` feature enabled, ts-rs tries parsing serde attributes.  
//! Please note that not all serde attributes are supported yet.

use std::path::Path;
use std::{collections::HashMap, fs::OpenOptions};
use std::{
    collections::{BTreeMap, BTreeSet, HashSet},
    io::{BufWriter, Write},
};

use std::any::TypeId;
pub use ts_rs_macros::TS;

#[doc(hidden)]
pub mod export;

/// A type which can be represented in TypeScript.  
/// Most of the time, you'd want to derive this trait instead of implementing it manually.  
/// ts-rs comes with implementations for all numeric types, `String`, `Vec`, `Option` and tuples.
///
/// ## get started
/// [TS](TS) can easily be derived for structs and enums:
/// ```rust
/// use ts_rs::TS;
///
/// #[derive(TS)]
/// struct User {
///     first_name: String,
///     last_name: String,
/// }
/// ```
/// To actually obtain the bindings, you can call `User::dump` to write the bindings to a file.
/// ```rust
/// # use ts_rs::TS;
/// # #[derive(TS)]
/// # struct User {
/// #     first_name: String,
/// #     last_name: String,
/// # }
/// std::fs::remove_file("bindings.ts").ok();
/// User::dump("bindings.ts").unwrap();
/// ```
///
/// Preferrably, you should use the [export!](export!) macro, which takes care of dependencies
/// between types and allows you to decide between `export` and `declare`.
///
/// ### struct attributes
///
/// - `#[ts(rename = "..")]`:  
///   Set the name of the generated interface  
///
/// - `#[ts(rename_all = "..")]`:  
///   Rename all fields of this struct.  
///   Valid values are `lowercase`, `UPPERCASE`, `camelCase`, `snake_case`, `PascalCase`, `SCREAMING_SNAKE_CASE`
///   
/// ### struct field attributes
///
/// - `#[ts(type = "..")]`:  
///   Overrides the type used in TypeScript  
///
/// - `#[ts(rename = "..")]`:  
///   Renames this field  
///
/// - `#[ts(inline)]`:  
///   Inlines the type of this field  
///
/// - `#[ts(skip)]`:  
///   Skip this field  
///
/// - `#[ts(optional)]
///   Indicates the field may be omitted from the serialized struct
///
/// - `#[ts(flatten)]`:  
///   Flatten this field (only works if the field is a struct)  
///   
/// ### enum attributes
///
/// - `#[ts(rename = "..")]`:  
///   Set the name of the generated type  
///
/// - `#[ts(rename_all = "..")]`:  
///   Rename all variants of this enum.  
///   Valid values are `lowercase`, `UPPERCASE`, `camelCase`, `snake_case`, `PascalCase`, `SCREAMING_SNAKE_CASE`
///  
/// ### enum variant attributes
///
/// - `#[ts(rename = "..")]`:  
///   Renames this variant  
///
/// - `#[ts(skip)]`:  
///   Skip this variant  

pub trait TS: 'static {
    /// Declaration of this type, e.g. `interface User { user_id: number, ... }`.
    /// This function will panic if the type has no declaration.
    fn decl() -> String {
        panic!("{} cannot be declared", Self::name());
    }

    /// Name of this type in TypeScript.
    fn name() -> String;

    /// Formats this types definition in TypeScript, e.g `{ user_id: number }`.
    /// This function will panic if the type cannot be inlined.
    fn inline(#[allow(unused_variables)] indent: usize) -> String {
        panic!("{} cannot be inlined", Self::name());
    }

    /// Flatten an type declaration.  
    /// This function will panic if the type cannot be flattened.
    fn inline_flattened(#[allow(unused_variables)] indent: usize) -> String {
        panic!("{} cannot be flattened", Self::name())
    }

    /// All type ids and typescript names of the types this type depends on.  
    /// This is used for resolving imports when using the `export!` macro.  
    fn dependencies() -> Vec<(TypeId, String)>;

    /// `true` if this is a transparent type, e.g tuples or a list.  
    /// This is used for resolving imports when using the `export!` macro.
    fn transparent() -> bool;

    /// Dumps the declaration of this type to a file.  
    /// If the file does not exist, it will be created.  
    /// If it does, the declaration will be appended.
    ///
    /// This function will panicked when called on a type which does not have a declaration.
    fn dump(out: impl AsRef<Path>) -> std::io::Result<()> {
        let out = out.as_ref();
        let file = OpenOptions::new()
            .append(true)
            .create(true)
            .truncate(false)
            .open(out)?;
        let mut writer = BufWriter::new(file);
        writer.write_all(Self::decl().as_bytes())?;
        writer.write_all(b"\n\n")?;
        writer.flush()?;
        Ok(())
    }
}

macro_rules! impl_primitives {
    ($($($ty:ty),* => $l:literal),*) => { $($(
        impl TS for $ty {
            fn name() -> String {
                $l.to_owned()
            }
            fn inline(_: usize) -> String {
                $l.to_owned()
            }
            fn dependencies() -> Vec<(TypeId, String)> {
                vec![]
            }
            fn transparent() -> bool {
                false
            }
        }
    )*)* };
}

macro_rules! impl_tuples {
    ( impl $($i:ident),* ) => {
        impl<$($i: TS),*> TS for ($($i,)*) {
            fn name() -> String {
                format!(
                    "[{}]",
                    vec![$($i::name()),*].join(", ")
                )
            }
            fn inline(indent: usize) -> String {
                format!(
                    "[{}]",
                    vec![
                        $($i::inline(indent)),*
                    ].join(", ")
                )
            }
            fn dependencies() -> Vec<(TypeId, String)> {
                vec![$((TypeId::of::<$i>(), $i::name())),*]
            }
            fn transparent() -> bool {
                true
            }
        }
    };
    ( $i2:ident $(, $i:ident)* ) => {
        impl_tuples!(impl $i2 $(, $i)* );
        impl_tuples!($($i),*);
    };
    () => {};
}

macro_rules! impl_proxy {
    ($($t:tt)*) => {
        $($t)* {
            fn name() -> String {
                T::name()
            }
            fn inline(indent: usize) -> String {
                T::inline(indent)
            }
            fn inline_flattened(indent: usize) -> String {
                T::inline_flattened(indent)
            }
            fn dependencies() -> Vec<(TypeId, String)> {
                T::dependencies()
            }
            fn transparent() -> bool {
                true
            }
        }
    };
}

impl_primitives! {
    u8, i8, u16, i16, u32, i32, u64, i64, f32, f64, usize, isize => "number",
    u128, i128 => "bigint",
    bool => "boolean",
    String, &'static str => "string",
    () => "null"
}

#[cfg(feature = "chrono-impl")]
impl_primitives! {
    chrono::NaiveDateTime => "string"
}

#[cfg(feature = "bigdecimal-impl")]
impl_primitives! {
    bigdecimal::BigDecimal => "string"
}

impl_tuples!(T1, T2, T3, T4, T5, T6, T7, T8, T9, T10);
impl_proxy!(impl<T: TS> TS for Box<T>);
impl_proxy!(impl<T: TS> TS for std::sync::Arc<T>);
impl_proxy!(impl<T: TS> TS for std::rc::Rc<T>);
impl_proxy!(impl<T: TS + ToOwned> TS for std::borrow::Cow<'static, T>);
impl_proxy!(impl<T: TS> TS for std::cell::Cell<T>);
impl_proxy!(impl<T: TS> TS for std::cell::RefCell<T>);

impl<T: TS> TS for Option<T> {
    fn name() -> String {
        format!("{} | null", T::name())
    }

    fn inline(indent: usize) -> String {
        format!("{} | null", T::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![(TypeId::of::<T>(), T::name())]
    }

    fn transparent() -> bool {
        true
    }
}

impl<T: TS> TS for Vec<T> {
    fn name() -> String {
        format!("{}[]", T::name())
    }

    fn inline(indent: usize) -> String {
        format!("{}[]", T::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![(TypeId::of::<T>(), T::name())]
    }

    fn transparent() -> bool {
        true
    }
}

impl<T: TS> TS for HashSet<T> {
    fn name() -> String {
        format!("{}[]", T::name())
    }

    fn inline(indent: usize) -> String {
        format!("{}[]", T::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![(TypeId::of::<T>(), T::name())]
    }

    fn transparent() -> bool {
        true
    }
}

impl<T: TS> TS for BTreeSet<T> {
    fn name() -> String {
        format!("{}[]", T::name())
    }

    fn inline(indent: usize) -> String {
        format!("{}[]", T::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![(TypeId::of::<T>(), T::name())]
    }

    fn transparent() -> bool {
        true
    }
}

impl<K: TS, V: TS> TS for HashMap<K, V> {
    fn name() -> String {
        format!("{{ [key: {}]: {} }}", K::name(), V::name())
    }

    fn inline(indent: usize) -> String {
        format!("{{ [key: {}]: {} }}", K::inline(indent), V::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![
            (TypeId::of::<K>(), K::name()),
            (TypeId::of::<V>(), V::name()),
        ]
    }

    fn transparent() -> bool {
        true
    }
}

impl<K: TS, V: TS> TS for BTreeMap<K, V> {
    fn name() -> String {
        format!("{{ [key: {}]: {} }}", K::name(), V::name())
    }

    fn inline(indent: usize) -> String {
        format!("{{ [key: {}]: {} }}", K::inline(indent), V::inline(indent))
    }

    fn dependencies() -> Vec<(TypeId, String)> {
        vec![
            (TypeId::of::<K>(), K::name()),
            (TypeId::of::<V>(), V::name()),
        ]
    }

    fn transparent() -> bool {
        true
    }
}