1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//! Provides an expression macro `try_match` that performs pattern
//! matching and returns the bound variables via `Ok(_)` iff successful.
//!
//! # Examples
//!
//! ## Explicit Mapping
//!
//! ```
//! use try_match::try_match;
//!
//! #[derive(Copy, Clone, Debug, PartialEq)]
//! enum Enum<T> { Var1(T), Var2 }
//! use Enum::{Var1, Var2};
//!
//! // The right-hand side of `=>` if successful
//! assert_eq!(try_match!(Var1(x) = Var1(42)    => x),     Ok(42));
//! assert_eq!(try_match!(Var2    = Var2::<u32> => "yay"), Ok("yay"));
//!
//! // `Err(input)` on failure
//! assert_eq!(try_match!(Var1(x) = Var2::<u32> => x),     Err(Var2));
//! assert_eq!(try_match!(Var2    = Var1(42)    => "yay"), Err(Var1(42)));
//! ```
//!
//! ## Implicit Mapping
//!
//! `=>` and the part that comes after can be omitted (requires `implicit_map`
//! feature, which is enabled by default; you can disable it to skip the
//! compilation of the internal procedural macro):
//!
//! ```
//! # use try_match::try_match;
//! # #[derive(Debug, PartialEq)] enum Enum<T> { Var1(T), Var2 }
//! # use Enum::{Var1, Var2};
//! // `()` if there are no bound variables
//! assert_eq!(try_match!(Var1(_) = Var1(42)), Ok(()));
//!
//! // The bound variable if there is exactly one bound variables
//! assert_eq!(try_match!(Var1(x) = Var1(42)), Ok(42));
//!
//! // An anonymous struct if there are multiple bound variables
//! let vars = try_match!(Var1((a, b)) = Var1((12, 34))).unwrap();
//! assert_eq!((vars.a, vars.b), (12, 34));
//! ```
//!
//! It produces a tuple if you name the bound variables like `_0`, `_1`, `_2`,
//! ...:
//!
//! ```
//! # use try_match::try_match;
//! # #[derive(Debug, PartialEq)] enum Enum<T> { Var1(T), Var2 }
//! # use Enum::{Var1, Var2};
//! let (a, b) = try_match!(Var1((_0, _1)) = Var1((12, 34))).unwrap();
//! assert_eq!((a, b), (12, 34));
//! ```
//!
//! It's an error to specify non-contiguous binding indices:
//!
//! ```compile_fail
//! # use try_match::try_match;
//! # #[derive(Debug, PartialEq)] enum Enum<T> { Var1(T), Var2 }
//! # use Enum::{Var1, Var2};
//! let _ = try_match!(Var1((_0, _2)) = Var1((12, 34)));
//! ```
//!
//! ```compile_fail
//! # use try_match::try_match;
//! # #[derive(Debug, PartialEq)] enum Enum<T> { Var1(T), Var2 }
//! # use Enum::{Var1, Var2};
//! let _ = try_match!(Var1((_0, _9223372036854775808)) = Var1((12, 34)));
//! ```
//!
//! # Restrictions
//!
//!  - Macros cannot be used in a supplied pattern.
//!
//! # Related Work: `matches`
//!
//! [`matches!`] is similar but only returns `bool` indicating whether matching
//! was successful or not.
//!
//! ```no_compile
//! let success1 = matches!(Var1(42), Var1(_));
//! let success2 = try_match!(Var1(_) = Var1(42)).is_ok();
//! ```
//!
//! [`matches!`]: https://crates.io/crates/matches
//!
#![no_std]

/// Try to match `$in` against a given pattern `$p`. Produces `Ok($out)` if
/// successful; `Err($in)` otherwise.
///
/// `=> $out` can be left out, in which case it's implied based on the number of
/// bound variables in `$p`:
///
/// - If there are no bound variables, it is implied to be `()`.
/// - If there is exactly one bound variables `var`, it is implied to be `var`.
/// - If there are multiple bound variables `var1, var2, ...`, it is implied to
///   be `AnonymousType { var1, var2 }`.
///
/// `AnonymousType` derives `Clone` and `Copy`, and `Debug` if `std` feature is
/// enabled.
///
/// See [the crate-level documentation](index.html) for examples.
#[macro_export]
macro_rules! try_match {
    ($p:pat = $in:expr) => {
        match $in {
            $p => ::core::result::Result::Ok($crate::collect_captures_outer!($p)),
            in_value => ::core::result::Result::Err(in_value),
        }
    };
    ($p:pat = $in:expr => $out:expr) => {
        match $in {
            $p => ::core::result::Result::Ok($out),
            in_value => ::core::result::Result::Err(in_value),
        }
    };
}

/// Given a pattern, creates an expression that includes bound variables.
///
/// - If there are no bound variables, it generates `()`.
/// - If there is exactly one bound variables `var`, it generates `var`.
/// - If there are multiple bound variables `var1, var2, ...`, it generates
///   `SomeType { var1, var2 }`.
///
#[cfg(feature = "std")]
#[doc(hidden)]
#[macro_export]
macro_rules! collect_captures_outer {
    ($p:pat) => { $crate::collect_captures!(std $p) };
}

#[cfg(not(feature = "std"))]
#[doc(hidden)]
#[macro_export]
macro_rules! collect_captures_outer {
    ($p:pat) => { $crate::collect_captures!(no_std $p) };
}

/// `#[proc_macro_hack]` makes it possible to use this procedural macro in
/// expression position without relying on an unstable rustc feature, but with
/// some restrictions. See `proc_macro_hack`'s documentation for more.
#[cfg(feature = "implicit_map")]
#[proc_macro_hack::proc_macro_hack]
#[doc(hidden)]
pub use try_match_inner::collect_captures;

#[cfg(not(feature = "implicit_map"))]
#[macro_export]
macro_rules! collect_captures {
    ($p:pat) => {
        compile_error!(
            "can't use the implicit mapping form of `try_match!` because \
             the feature `implicit_map` is disabled"
        )
    };
}