1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
// Copyright (C) 2015 - 2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::cell::RefCell;
#[cfg(feature = "openssl")]
use std::collections::HashSet;
#[cfg(feature = "openssl")]
use std::sync::Arc as Rc;
#[cfg(feature = "openssl")]
use std::convert::From;

use chrono::UTC;
#[cfg(feature = "openssl")]
use data_encoding::base32hex;
use rand;

use ::error::*;
use ::rr::{DNSClass, RecordType, Record, RData};
use ::rr::rdata::NULL;
use ::rr::domain;
use ::rr::dnssec::{KeyPair, Signer};
#[cfg(feature = "openssl")]
use ::rr::dnssec::TrustAnchor;
use ::op::{Message, MessageType, OpCode, Query, UpdateMessage};
#[cfg(feature = "openssl")]
use ::op::ResponseCode;
use ::serialize::binary::*;
use ::client::ClientConnection;

/// The Client is abstracted over either trust_dns::tcp::TcpClientConnection or
///  trust_dns::udp::UdpClientConnection
///
/// Usage of TCP or UDP is up to the user. Some DNS servers
///  disallow TCP in some cases, so if TCP double check if UDP works.
///
/// *note* As of 0.8.0, Client as been deprecated in favor of `trust_dns::client::ClientFuture`
#[deprecated = "see trust_dns::client::ClientFuture"]
pub struct Client<C: ClientConnection> {
  client_connection: RefCell<C>,
  #[cfg(feature = "openssl")]
  trust_anchor: TrustAnchor,
}

#[allow(deprecated)]
impl<C: ClientConnection> Client<C> {
  /// Creates a new DNS client with the specified connection type
  ///
  /// # Arguments
  ///
  /// * `client_connection` - the client_connection to use for all communication
  #[allow(deprecated)]
  #[cfg(feature = "openssl")]
  pub fn new(client_connection: C) -> Client<C> {
    Self::with_trust_anchor(client_connection, TrustAnchor::default())
  }

  /// Creates a new DNS client with the specified connection type
  ///
  /// # Arguments
  ///
  /// * `client_connection` - the client_connection to use for all communication
  #[allow(deprecated)]
  #[cfg(not(feature = "openssl"))]
  pub fn new(client_connection: C) -> Client<C> {
    Client{ client_connection: RefCell::new(client_connection) }
  }


  /// This variant allows for the trust_anchor to be replaced
  ///
  /// # Arguments
  ///
  /// * `client_connection` - the client_connection to use for all communication
  /// * `trust_anchor` - the set of trusted DNSKEY public_keys, by default this only contains the
  ///                    root public_key.
  #[allow(deprecated)]
  #[cfg(feature = "openssl")]
  pub fn with_trust_anchor(client_connection: C, trust_anchor: TrustAnchor) -> Client<C> {
    Client{ client_connection: RefCell::new(client_connection),
            trust_anchor: trust_anchor }
  }

  /// DNSSec validating query, this will return an error if the requested records can not be
  ///  validated against the trust_anchor.
  ///
  /// When the resolver receives an answer via the normal DNS lookup process, it then checks to
  ///  make sure that the answer is correct. Then starts
  ///  with verifying the DS and DNSKEY records at the DNS root. Then use the DS
  ///  records for the top level domain found at the root, e.g. 'com', to verify the DNSKEY
  ///  records in the 'com' zone. From there see if there is a DS record for the
  ///  subdomain, e.g. 'example.com', in the 'com' zone, and if there is use the
  ///  DS record to verify a DNSKEY record found in the 'example.com' zone. Finally,
  ///  verify the RRSIG record found in the answer for the rrset, e.g. 'www.example.com'.
  ///
  /// *Note* As of now, this will not recurse on PTR or CNAME record responses, that is up to
  ///        the caller.
  ///
  /// # Arguments
  ///
  /// * `query_name` - the label to lookup
  /// * `query_class` - most likely this should always be DNSClass::IN
  /// * `query_type` - record type to lookup
  #[cfg(feature = "openssl")]
  pub fn secure_query(&self, query_name: &domain::Name, query_class: DNSClass, query_type: RecordType) -> ClientResult<Message> {
    // TODO: if we knew we were talking with a DNS server that supported multiple queries, these
    //  could be a single multiple query request...

    // with the secure setting, we should get the RRSIG as well as the answer
    //  the RRSIG is signed by the DNSKEY, the DNSKEY is signed by the DS record in the Parent
    //  zone. The key_tag is the DS record is assigned to the DNSKEY.
    let record_response = try!(self.inner_query(query_name, query_class, query_type, true));
    {
      // TODO, would iterators be more efficient to pass around?
      let rrsigs: Vec<&Record> = record_response.get_answers().iter()
                                                .chain(record_response.get_name_servers())
                                                .filter(|rr| rr.get_rr_type() == RecordType::RRSIG).collect();

      if rrsigs.is_empty() {
        return Err(ClientErrorKind::NoRRSIG.into());
      }

      // group the record sets by name and type
      let mut rrset_types: HashSet<(domain::Name, RecordType)> = HashSet::new();
      for rrset in record_response.get_answers().iter()
                                  .chain(record_response.get_name_servers())
                                  .filter(|rr| rr.get_rr_type() != RecordType::RRSIG)
                                  .map(|rr| (rr.get_name().clone(), rr.get_rr_type())) {
        rrset_types.insert(rrset);
      }

      // verify all returned rrsets
      for &(ref name, rrset_type) in rrset_types.iter() {
        let rrset: Vec<&Record> = record_response.get_answers().iter()
                                                 .chain(record_response.get_name_servers())
                                                 .filter(|rr| rr.get_rr_type() == rrset_type && rr.get_name() == name).collect();

        // '. DNSKEY' -> 'com. DS' -> 'com. DNSKEY' -> 'examle.com. DS' -> 'example.com. DNSKEY'
        // 'com. DS' is signed by '. DNSKEY' which produces 'com. RRSIG', all are in the same zone, '.'
        //  the '.' DNSKEY is signed by the well known root certificate.
        // TODO fix rrsigs clone()
        let proof = try!(self.recursive_query_verify(&name, rrset, rrsigs.clone(), rrset_type, query_class));

        // TODO return this, also make a prettier print
        debug!("proved existance through for {}:{:?}: {:?}", name, rrset_type, proof);
      }

      // at this point all records are validated, but if there are NSEC records present,
      //  then it's a negative confirmation...
      if record_response.get_response_code() == ResponseCode::NXDomain ||
         record_response.get_answers().is_empty() {
        let mut validated_nx = false;
        for &(_, rrset_type) in rrset_types.iter() {
          match rrset_type {
            rt @ RecordType::NSEC => {
              try!(self.verify_nsec(query_name, query_type, query_class,
                 record_response.get_name_servers().iter().filter(|rr| rr.get_rr_type() == rt).collect()));
              validated_nx = true;
            },
            rt @ RecordType::NSEC3 => {
              try!(self.verify_nsec3(query_name, query_type, query_class,
                record_response.get_name_servers().iter().filter(|rr| rr.get_rr_type() == RecordType::SOA).next(),
                record_response.get_name_servers().iter().filter(|rr| rr.get_rr_type() == rt).collect()));
              validated_nx = true;
            },
            _ => (),
          }
        }

        if !validated_nx { return Err(ClientErrorKind::Message("no nsec(3) records to validate nxdomain").into()) }
      }
    }

    // getting here means that we looped through all records with validation
    Ok(record_response)
  }

  /// Verifies a record set against the supplied signatures, looking up the DNSKey chain.
  /// returns the chain of proof or an error if there is none.
  #[cfg(feature = "openssl")]
  fn recursive_query_verify(&self, name: &domain::Name, rrset: Vec<&Record>, rrsigs: Vec<&Record>,
    query_type: RecordType, query_class: DNSClass) -> ClientResult<Vec<Record>> {

    // TODO: this is ugly, what reference do I want?
    let rrset: Vec<Record> = rrset.iter().map(|rr|rr.clone()).cloned().collect();

    // verify the DNSKey via a DS key if it's the secure_entry_point
    if let Some(record) = rrset.first() {
      if let &RData::DNSKEY(ref dnskey) = record.get_rdata() {
        // the spec says that the secure_entry_point isn't reliable for the main DNSKey...
        //  but how do you know which needs to be validated with the DS in the parent zone?
        if dnskey.is_zone_key() && dnskey.is_secure_entry_point() {
          let mut proof = try!(self.verify_dnskey(record));
          // TODO: this is verified, it can be cached
          proof.push(record.clone());
          return Ok(proof);
        }
      }
    }

    // standard rrsig verification
    for rrsig in rrsigs.iter().filter(|rr| rr.get_name() == name) {
      // TODO: need to verify inception and experation...
      if let &RData::SIG(ref sig) = rrsig.get_rdata() {
        // get DNSKEY from signer_name
        let key_response = self.inner_query(sig.get_signer_name(), query_class, RecordType::DNSKEY, true);
        if key_response.is_err() { debug!("error querying for: {}, {:?}, {}", sig.get_signer_name(), RecordType::DNSKEY, key_response.unwrap_err()); continue }
        let key_response = key_response.unwrap();

        let key_rrset: Vec<&Record> = key_response.get_answers().iter().filter(|rr| rr.get_rr_type() == RecordType::DNSKEY).collect();
        let key_rrsigs: Vec<&Record> = key_response.get_answers().iter().filter(|rr| rr.get_rr_type() == RecordType::RRSIG).collect();

        for dnskey in key_rrset.iter() {
          if let &RData::DNSKEY(ref rdata) = dnskey.get_rdata() {
            if rdata.is_revoke() { debug!("revoked: {}", dnskey.get_name()); continue } // TODO: does this need to be validated? RFC 5011
            if !rdata.is_zone_key() { continue }
            if *rdata.get_algorithm() != sig.get_algorithm() { continue }

            let pkey = KeyPair::from_vec(rdata.get_public_key(), *rdata.get_algorithm());
            if pkey.is_err() { debug!("could not translate public_key_from_vec: {}", pkey.err().unwrap()); continue }
            let pkey = pkey.unwrap();

            let signer: Signer = Signer::new_verifier(*rdata.get_algorithm(), pkey, sig.get_signer_name().clone());
            let rrset_hash = signer.hash_rrset_with_rrsig(rrsig, &rrset);
            if rrset_hash.is_err() { debug!("could not hash_rrset_with_rrsig: {}, {}", name, rrset_hash.unwrap_err()); continue }
            let rrset_hash: Vec<u8> = rrset_hash.unwrap();

            // FYI mapping the error to bool here, this code is going away after futures land
            if signer.verify(&rrset_hash, sig.get_sig()).map(|_| true).unwrap_or(false) {
              debug!("verified: {}:{:?} with: {}:{:?}", name, query_type, rrsig.get_name(),
                     if let &RData::SIG(ref sig) = rrsig.get_rdata() { sig.get_type_covered() } else { RecordType::NULL });

              if sig.get_signer_name() == name && query_type == RecordType::DNSKEY {
                // this is self signed... let's skip to DS validation
                let proof = self.verify_dnskey(dnskey);
                if proof.is_err() { debug!("could not verify dnskey: {}, {}", dnskey.get_name(), proof.unwrap_err()); continue }
                let mut proof: Vec<Record> = proof.unwrap();

                // TODO: this is verified, cache it
                proof.push((*dnskey).clone());
                return Ok(proof);
              } else {
                let proof = self.recursive_query_verify(sig.get_signer_name(), key_rrset.clone(), key_rrsigs.clone(), RecordType::DNSKEY, query_class);
                if proof.is_err() { debug!("could not recursive_query_verify: {}, {}", sig.get_signer_name(), proof.unwrap_err()); continue }
                let mut proof: Vec<Record> = proof.unwrap();

                // TODO: this is verified, cache it
                proof.push((*dnskey).clone());
                return Ok(proof);
              }
            } else {
              debug!("could not verify: {}:{:?} with: {}:{:?}", name, query_type, rrsig.get_name(),
                     if let &RData::SIG(ref sig) = rrsig.get_rdata() { sig.get_type_covered() } else { RecordType::NULL });
            }
          } else {
            panic!("this should be a DNSKEY") // valid panic, never should happen
          }
        }
      } else {
        panic!("expected RRSIG: {:?}", rrsig.get_rr_type()); // valid panic, never should happen
      }
    }

    Err(ClientErrorKind::NoDNSKEY.into())
  }

  /// attempts to verify the DNSKey against the DS of the parent.
  /// returns the chain of proof or an error if there is none.
  #[cfg(feature = "openssl")]
  fn verify_dnskey(&self, dnskey: &Record) -> ClientResult<Vec<Record>> {
    let name: &domain::Name = dnskey.get_name();

    if let &RData::DNSKEY(ref rdata) = dnskey.get_rdata() {
      if self.trust_anchor.contains(rdata.get_public_key()) {
        return Ok(vec![dnskey.clone()])
      }
    }

    let ds_response = try!(self.inner_query(&name, dnskey.get_dns_class(), RecordType::DS, true));
    let ds_rrset: Vec<&Record> = ds_response.get_answers().iter().filter(|rr| rr.get_rr_type() == RecordType::DS).collect();
    let ds_rrsigs: Vec<&Record> = ds_response.get_answers().iter().filter(|rr| rr.get_rr_type() == RecordType::RRSIG).collect();

    for ds in ds_rrset.iter() {
      if let &RData::DS(ref ds_rdata) = ds.get_rdata() {
        // 5.1.4.  The Digest Field
        //
        //    The DS record refers to a DNSKEY RR by including a digest of that
        //    DNSKEY RR.
        //
        //    The digest is calculated by concatenating the canonical form of the
        //    fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
        //    and then applying the digest algorithm.
        //
        //      digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
        //
        //       "|" denotes concatenation
        //
        //      DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
        //
        //    The size of the digest may vary depending on the digest algorithm and
        //    DNSKEY RR size.  As of the time of this writing, the only defined
        //    digest algorithm is SHA-1, which produces a 20 octet digest.
        let mut buf: Vec<u8> = Vec::new();
        {
          let mut encoder: BinEncoder = BinEncoder::new(&mut buf);
          encoder.set_canonical_names(true);
          if let Err(e) = name.emit(&mut encoder) { error!("could not emit name: {}, {}", name, e); continue };
          if let Err(e) = dnskey.get_rdata().emit(&mut encoder) { error!("could not emit dnskey.rdate: {}, {}", name, e); continue };
        }

        let ds_verify = ds_rdata.get_digest_type()
                       .hash(&buf)
                       .map_err(|e| e.into())
                       .and_then(|hash|
          if &hash as &[u8] == ds_rdata.get_digest() {
            // continue to verify the chain...
            let mut proof: Vec<Record> = try!(self.recursive_query_verify(&name, ds_rrset.clone(), ds_rrsigs.clone(), RecordType::DNSKEY, dnskey.get_dns_class()));
            proof.push(dnskey.clone());
            return Ok(proof)
          } else {
            return Err(ClientErrorKind::NoDS.into())
          }
        );

        if ds_verify.is_ok() { return ds_verify }
        else { debug!("verify with DS failed: {}", name) }

      } else {
        panic!("expected DS: {:?}", ds.get_rr_type()); // valid panic, never should happen
      }
    }

    Err(ClientErrorKind::NoDS.into())
  }

  // RFC 4035             DNSSEC Protocol Modifications            March 2005
  //
  // 5.4.  Authenticated Denial of Existence
  //
  //  A resolver can use authenticated NSEC RRs to prove that an RRset is
  //  not present in a signed zone.  Security-aware name servers should
  //  automatically include any necessary NSEC RRs for signed zones in
  //  their responses to security-aware resolvers.
  //
  //  Denial of existence is determined by the following rules:
  //
  //  o  If the requested RR name matches the owner name of an
  //     authenticated NSEC RR, then the NSEC RR's type bit map field lists
  //     all RR types present at that owner name, and a resolver can prove
  //     that the requested RR type does not exist by checking for the RR
  //     type in the bit map.  If the number of labels in an authenticated
  //     NSEC RR's owner name equals the Labels field of the covering RRSIG
  //     RR, then the existence of the NSEC RR proves that wildcard
  //     expansion could not have been used to match the request.
  //
  //  o  If the requested RR name would appear after an authenticated NSEC
  //     RR's owner name and before the name listed in that NSEC RR's Next
  //     Domain Name field according to the canonical DNS name order
  //     defined in [RFC4034], then no RRsets with the requested name exist
  //     in the zone.  However, it is possible that a wildcard could be
  //     used to match the requested RR owner name and type, so proving
  //     that the requested RRset does not exist also requires proving that
  //     no possible wildcard RRset exists that could have been used to
  //     generate a positive response.
  //
  //  In addition, security-aware resolvers MUST authenticate the NSEC
  //  RRsets that comprise the non-existence proof as described in Section
  //  5.3.
  //
  //  To prove the non-existence of an RRset, the resolver must be able to
  //  verify both that the queried RRset does not exist and that no
  //  relevant wildcard RRset exists.  Proving this may require more than
  //  one NSEC RRset from the zone.  If the complete set of necessary NSEC
  //  RRsets is not present in a response (perhaps due to message
  //  truncation), then a security-aware resolver MUST resend the query in
  //  order to attempt to obtain the full collection of NSEC RRs necessary
  //  to verify the non-existence of the requested RRset.  As with all DNS
  //  operations, however, the resolver MUST bound the work it puts into
  //  answering any particular query.
  //
  //  Since a validated NSEC RR proves the existence of both itself and its
  //  corresponding RRSIG RR, a validator MUST ignore the settings of the
  //  NSEC and RRSIG bits in an NSEC RR.
  #[cfg(feature = "openssl")]
  fn verify_nsec(&self, query_name: &domain::Name, query_type: RecordType,
                 _: DNSClass, nsecs: Vec<&Record>) -> ClientResult<()> {
    // first look for a record with the same name
    //  if they are, then the query_type should not exist in the NSEC record.
    //  if we got an NSEC record of the same name, but it is listed in the NSEC types,
    //    WTF? is that bad server, bad record
    if nsecs.iter().any(|r| query_name == r.get_name() && {
      if let &RData::NSEC(ref rdata) = r.get_rdata() {
        !rdata.get_type_bit_maps().contains(&query_type)
      } else {
        panic!("expected NSEC was {:?}", r.get_rr_type()) // valid panic, never should happen
      }
    }) { return Ok(()) }

    // based on the WTF? above, we will ignore any NSEC records of the same name
    if nsecs.iter().filter(|r| query_name != r.get_name()).any(|r| query_name > r.get_name() && {
      if let &RData::NSEC(ref rdata) = r.get_rdata() {
        query_name < rdata.get_next_domain_name()
      } else {
        panic!("expected NSEC was {:?}", r.get_rr_type()) // valid panic, never should happen
      }
    }) { return Ok(()) }

    // TODO: need to validate ANY or *.domain record existance, which doesn't make sense since
    //  that would have been returned in the request
    // if we got here, then there are no matching NSEC records, no validation
    Err(ClientErrorKind::Message("can not validate nsec records").into())
  }

  // Laurie, et al.              Standards Track                    [Page 22]
  //
  // RFC 5155                         NSEC3                        March 2008
  //
  //
  // 8.  Validator Considerations
  //
  // 8.1.  Responses with Unknown Hash Types
  //
  //    A validator MUST ignore NSEC3 RRs with unknown hash types.  The
  //    practical result of this is that responses containing only such NSEC3
  //    RRs will generally be considered bogus.
  //
  // 8.2.  Verifying NSEC3 RRs
  //
  //    A validator MUST ignore NSEC3 RRs with a Flag fields value other than
  //    zero or one.
  //
  //    A validator MAY treat a response as bogus if the response contains
  //    NSEC3 RRs that contain different values for hash algorithm,
  //    iterations, or salt from each other for that zone.
  //
  // 8.3.  Closest Encloser Proof
  //
  //    In order to verify a closest encloser proof, the validator MUST find
  //    the longest name, X, such that
  //
  //    o  X is an ancestor of QNAME that is matched by an NSEC3 RR present
  //       in the response.  This is a candidate for the closest encloser,
  //       and
  //
  //    o  The name one label longer than X (but still an ancestor of -- or
  //       equal to -- QNAME) is covered by an NSEC3 RR present in the
  //       response.
  //
  //    One possible algorithm for verifying this proof is as follows:
  //
  //    1.  Set SNAME=QNAME.  Clear the flag.
  //
  //    2.  Check whether SNAME exists:
  //
  //        *  If there is no NSEC3 RR in the response that matches SNAME
  //           (i.e., an NSEC3 RR whose owner name is the same as the hash of
  //           SNAME, prepended as a single label to the zone name), clear
  //           the flag.
  //
  //        *  If there is an NSEC3 RR in the response that covers SNAME, set
  //           the flag.
  //
  //        *  If there is a matching NSEC3 RR in the response and the flag
  //           was set, then the proof is complete, and SNAME is the closest
  //           encloser.
  //
  //        *  If there is a matching NSEC3 RR in the response, but the flag
  //           is not set, then the response is bogus.
  //
  //    3.  Truncate SNAME by one label from the left, go to step 2.
  //
  //    Once the closest encloser has been discovered, the validator MUST
  //    check that the NSEC3 RR that has the closest encloser as the original
  //    owner name is from the proper zone.  The DNAME type bit must not be
  //    set and the NS type bit may only be set if the SOA type bit is set.
  //    If this is not the case, it would be an indication that an attacker
  //    is using them to falsely deny the existence of RRs for which the
  //    server is not authoritative.
  //
  //    In the following descriptions, the phrase "a closest (provable)
  //    encloser proof for X" means that the algorithm above (or an
  //    equivalent algorithm) proves that X does not exist by proving that an
  //    ancestor of X is its closest encloser.
  #[cfg(feature = "openssl")]
  fn verify_nsec3(&self, query_name: &domain::Name, query_type: RecordType,
                  _: DNSClass, soa: Option<&Record>,
                  nsec3s: Vec<&Record>) -> ClientResult<()> {
    // the search name is the one to look for
    let zone_name = try!(soa.ok_or(ClientError::from(ClientErrorKind::NoSOARecord(query_name.clone())))).get_name();
    debug!("nsec3s: {:?}", nsec3s);

    for nsec3 in nsec3s {
      // for each nsec3 we search for matching hashed names
      let mut search_name: domain::Name = query_name.clone();

      // hash the search name
      if let &RData::NSEC3(ref rdata) = nsec3.get_rdata() {
        // search all the name options
        while search_name.num_labels() >= zone_name.num_labels() {

          // TODO: cache hashes across nsec3 validations
          let hash = try!(rdata.get_hash_algorithm().hash(rdata.get_salt(), &search_name, rdata.get_iterations()));
          let hash_label = base32hex::encode(&hash).to_lowercase();
          let hash_name = zone_name.prepend_label(Rc::new(hash_label));

          if &hash_name == nsec3.get_name() {
            // like nsec, if there is a name that matches, then we have proof that the name does
            //  not exist
            if &search_name == query_name {
              if !rdata.get_type_bit_maps().contains(&query_type) { return Ok(()) }
            }

            return Ok(())
          }

          // need to continue up the chain
          search_name = search_name.base_name();
        }
      }
    }

    Err(ClientErrorKind::Message("can not validate nsec3 records").into())
  }

  /// A *classic* DNS query, i.e. does not perform and DNSSec operations
  ///
  /// *Note* As of now, this will not recurse on PTR or CNAME record responses, that is up to
  ///        the caller.
  ///
  /// # Arguments
  ///
  /// * `name` - the label to lookup
  /// * `query_class` - most likely this should always be DNSClass::IN
  /// * `query_type` - record type to lookup
  pub fn query(&self, name: &domain::Name, query_class: DNSClass, query_type: RecordType) -> ClientResult<Message> {
    self.inner_query(name, query_class, query_type, false)
  }

  fn inner_query(&self, name: &domain::Name, query_class: DNSClass, query_type: RecordType, secure: bool) -> ClientResult<Message> {
    debug!("querying: {} {:?}", name, query_type);

    // build the message
    let mut message: Message = Message::new();
    let id: u16 = rand::random();
    // TODO make recursion a parameter
    message.id(id).message_type(MessageType::Query).op_code(OpCode::Query).recursion_desired(true);

    // Extended dns
    {
      let edns = message.get_edns_mut();

      if secure {
        edns.set_dnssec_ok(true);
      }

      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    if secure {
      message.authentic_data(true);
      message.checking_disabled(false);
    }

    // add the query
    let mut query: Query = Query::new();
    query.name(name.clone()).query_class(query_class).query_type(query_type);
    message.add_query(query);

    self.send_message(&message)
  }

  /// Sends a record to create on the server, this will fail if the record exists (atomicity
  ///  depends on the server)
  ///
  /// [RFC 2136](https://tools.ietf.org/html/rfc2136), DNS Update, April 1997
  ///
  /// ```text
  ///  2.4.3 - RRset Does Not Exist
  ///
  ///   No RRs with a specified NAME and TYPE (in the zone and class denoted
  ///   by the Zone Section) can exist.
  ///
  ///   For this prerequisite, a requestor adds to the section a single RR
  ///   whose NAME and TYPE are equal to that of the RRset whose nonexistence
  ///   is required.  The RDLENGTH of this record is zero (0), and RDATA
  ///   field is therefore empty.  CLASS must be specified as NONE in order
  ///   to distinguish this condition from a valid RR whose RDLENGTH is
  ///   naturally zero (0) (for example, the NULL RR).  TTL must be specified
  ///   as zero (0).
  ///
  /// 2.5.1 - Add To An RRset
  ///
  ///    RRs are added to the Update Section whose NAME, TYPE, TTL, RDLENGTH
  ///    and RDATA are those being added, and CLASS is the same as the zone
  ///    class.  Any duplicate RRs will be silently ignored by the primary
  ///    master.
  /// ```
  ///
  /// # Arguments
  ///
  /// * `record` - the name of the record to create
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection)
  pub fn create(&self,
                record: Record,
                zone_origin: domain::Name,
                signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(record.get_name()));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(record.get_dns_class()).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    let mut prerequisite = Record::with(record.get_name().clone(), record.get_rr_type(), 0);
    prerequisite.dns_class(DNSClass::NONE);
    message.add_pre_requisite(prerequisite);
    message.add_update(record);

    // Extended dns
    {
      let edns = message.get_edns_mut();

      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Appends a record to an existing rrset, optionally require the rrset to exis (atomicity
  ///  depends on the server)
  ///
  /// [RFC 2136](https://tools.ietf.org/html/rfc2136), DNS Update, April 1997
  ///
  /// ```text
  /// 2.4.1 - RRset Exists (Value Independent)
  ///
  ///   At least one RR with a specified NAME and TYPE (in the zone and class
  ///   specified in the Zone Section) must exist.
  ///
  ///   For this prerequisite, a requestor adds to the section a single RR
  ///   whose NAME and TYPE are equal to that of the zone RRset whose
  ///   existence is required.  RDLENGTH is zero and RDATA is therefore
  ///   empty.  CLASS must be specified as ANY to differentiate this
  ///   condition from that of an actual RR whose RDLENGTH is naturally zero
  ///   (0) (e.g., NULL).  TTL is specified as zero (0).
  ///
  /// 2.5.1 - Add To An RRset
  ///
  ///    RRs are added to the Update Section whose NAME, TYPE, TTL, RDLENGTH
  ///    and RDATA are those being added, and CLASS is the same as the zone
  ///    class.  Any duplicate RRs will be silently ignored by the primary
  ///    master.
  /// ```
  ///
  /// # Arguments
  ///
  /// * `record` - the record to append to an RRSet
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `must_exist` - if true, the request will fail if the record does not exist
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection). If
  /// the rrset does not exist and must_exist is false, then the RRSet will be created.
  pub fn append(&self,
                record: Record,
                zone_origin: domain::Name,
                must_exist: bool,
                signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(record.get_name()));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(record.get_dns_class()).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    if must_exist {
      let mut prerequisite = Record::with(record.get_name().clone(), record.get_rr_type(), 0);
      prerequisite.dns_class(DNSClass::ANY);
      message.add_pre_requisite(prerequisite);
    }

    message.add_update(record);

    // Extended dns
    {
      let edns = message.get_edns_mut();

      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Compares and if it matches, swaps it for the new value (atomicity depends on the server)
  ///
  /// ```text
  ///  2.4.2 - RRset Exists (Value Dependent)
  ///
  ///   A set of RRs with a specified NAME and TYPE exists and has the same
  ///   members with the same RDATAs as the RRset specified here in this
  ///   section.  While RRset ordering is undefined and therefore not
  ///   significant to this comparison, the sets be identical in their
  ///   extent.
  ///
  ///   For this prerequisite, a requestor adds to the section an entire
  ///   RRset whose preexistence is required.  NAME and TYPE are that of the
  ///   RRset being denoted.  CLASS is that of the zone.  TTL must be
  ///   specified as zero (0) and is ignored when comparing RRsets for
  ///   identity.
  ///
  ///  2.5.4 - Delete An RR From An RRset
  ///
  ///   RRs to be deleted are added to the Update Section.  The NAME, TYPE,
  ///   RDLENGTH and RDATA must match the RR being deleted.  TTL must be
  ///   specified as zero (0) and will otherwise be ignored by the primary
  ///   master.  CLASS must be specified as NONE to distinguish this from an
  ///   RR addition.  If no such RRs exist, then this Update RR will be
  ///   silently ignored by the primary master.
  ///
  ///  2.5.1 - Add To An RRset
  ///
  ///   RRs are added to the Update Section whose NAME, TYPE, TTL, RDLENGTH
  ///   and RDATA are those being added, and CLASS is the same as the zone
  ///   class.  Any duplicate RRs will be silently ignored by the primary
  ///   master.
  /// ```
  ///
  /// # Arguements
  ///
  /// * `current` - the current current which must exist for the swap to complete
  /// * `new` - the new record with which to replace the current record
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection).
  pub fn compare_and_swap(&self,
                          current: Record,
                          new: Record,
                          zone_origin: domain::Name,
                          signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(current.get_name()));
    assert!(zone_origin.zone_of(new.get_name()));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(new.get_dns_class()).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    // make sure the record is what is expected
    let mut prerequisite = current.clone();
    prerequisite.ttl(0);
    message.add_pre_requisite(prerequisite);

    // add the delete for the old record
    let mut delete = current;
    // the class must be none for delete
    delete.dns_class(DNSClass::NONE);
    // the TTL shoudl be 0
    delete.ttl(0);
    message.add_update(delete);

    // insert the new record...
    message.add_update(new);

    // Extended dns
    {
      let edns = message.get_edns_mut();

      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Deletes a record (by rdata) from an rrset, optionally require the rrset to exist.
  ///
  /// [RFC 2136](https://tools.ietf.org/html/rfc2136), DNS Update, April 1997
  ///
  /// ```text
  /// 2.4.1 - RRset Exists (Value Independent)
  ///
  ///   At least one RR with a specified NAME and TYPE (in the zone and class
  ///   specified in the Zone Section) must exist.
  ///
  ///   For this prerequisite, a requestor adds to the section a single RR
  ///   whose NAME and TYPE are equal to that of the zone RRset whose
  ///   existence is required.  RDLENGTH is zero and RDATA is therefore
  ///   empty.  CLASS must be specified as ANY to differentiate this
  ///   condition from that of an actual RR whose RDLENGTH is naturally zero
  ///   (0) (e.g., NULL).  TTL is specified as zero (0).
  ///
  /// 2.5.4 - Delete An RR From An RRset
  ///
  ///   RRs to be deleted are added to the Update Section.  The NAME, TYPE,
  ///   RDLENGTH and RDATA must match the RR being deleted.  TTL must be
  ///   specified as zero (0) and will otherwise be ignored by the primary
  ///   master.  CLASS must be specified as NONE to distinguish this from an
  ///   RR addition.  If no such RRs exist, then this Update RR will be
  ///   silently ignored by the primary master.
  /// ```
  ///
  /// # Arguments
  ///
  /// * `record` - the record to delete from a RRSet, the name, type and rdata must match the
  ///              record to delete
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection). If
  /// the rrset does not exist and must_exist is false, then the RRSet will be deleted.
  pub fn delete_by_rdata(&self,
                         mut record: Record,
                         zone_origin: domain::Name,
                         signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(record.get_name()));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(record.get_dns_class()).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    // the class must be none for delete
    record.dns_class(DNSClass::NONE);
    // the TTL shoudl be 0
    record.ttl(0);
    message.add_update(record);

    // Extended dns
    {
      let edns = message.get_edns_mut();
      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Deletes an entire rrset, optionally require the rrset to exist.
  ///
  /// [RFC 2136](https://tools.ietf.org/html/rfc2136), DNS Update, April 1997
  ///
  /// ```text
  /// 2.4.1 - RRset Exists (Value Independent)
  ///
  ///   At least one RR with a specified NAME and TYPE (in the zone and class
  ///   specified in the Zone Section) must exist.
  ///
  ///   For this prerequisite, a requestor adds to the section a single RR
  ///   whose NAME and TYPE are equal to that of the zone RRset whose
  ///   existence is required.  RDLENGTH is zero and RDATA is therefore
  ///   empty.  CLASS must be specified as ANY to differentiate this
  ///   condition from that of an actual RR whose RDLENGTH is naturally zero
  ///   (0) (e.g., NULL).  TTL is specified as zero (0).
  ///
  /// 2.5.2 - Delete An RRset
  ///
  ///   One RR is added to the Update Section whose NAME and TYPE are those
  ///   of the RRset to be deleted.  TTL must be specified as zero (0) and is
  ///   otherwise not used by the primary master.  CLASS must be specified as
  ///   ANY.  RDLENGTH must be zero (0) and RDATA must therefore be empty.
  ///   If no such RRset exists, then this Update RR will be silently ignored
  ///   by the primary master.
  /// ```
  ///
  /// # Arguments
  ///
  /// * `record` - the record to delete from a RRSet, the name, and type must match the
  ///              record set to delete
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection). If
  /// the rrset does not exist and must_exist is false, then the RRSet will be deleted.
  pub fn delete_rrset(&self,
                      mut record: Record,
                      zone_origin: domain::Name,
                      signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(record.get_name()));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(record.get_dns_class()).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    // the class must be none for an rrset delete
    record.dns_class(DNSClass::ANY);
    // the TTL shoudl be 0
    record.ttl(0);
    // the rdata must be null to delete all rrsets
    record.rdata(RData::NULL(NULL::new()));
    message.add_update(record);

    // Extended dns
    {
      let edns = message.get_edns_mut();
      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Deletes all records at the specified name
  ///
  /// [RFC 2136](https://tools.ietf.org/html/rfc2136), DNS Update, April 1997
  ///
  /// ```text
  /// 2.5.3 - Delete All RRsets From A Name
  ///
  ///   One RR is added to the Update Section whose NAME is that of the name
  ///   to be cleansed of RRsets.  TYPE must be specified as ANY.  TTL must
  ///   be specified as zero (0) and is otherwise not used by the primary
  ///   master.  CLASS must be specified as ANY.  RDLENGTH must be zero (0)
  ///   and RDATA must therefore be empty.  If no such RRsets exist, then
  ///   this Update RR will be silently ignored by the primary master.
  /// ```
  ///
  /// # Arguments
  ///
  /// * `name_of_records` - the name of all the record sets to delete
  /// * `zone_origin` - the zone name to update, i.e. SOA name
  /// * `dns_class` - the class of the SOA
  /// * `signer` - the signer, with private key, to use to sign the request
  ///
  /// The update must go to a zone authority (i.e. the server used in the ClientConnection). This
  /// operation attempts to delete all resource record sets the the specified name reguardless of
  /// the record type.
  pub fn delete_all(&self,
                    name_of_records: domain::Name,
                    zone_origin: domain::Name,
                    dns_class: DNSClass,
                    signer: &Signer) -> ClientResult<Message> {
    assert!(zone_origin.zone_of(&name_of_records));

    // for updates, the query section is used for the zone
    let mut zone: Query = Query::new();
    zone.name(zone_origin).query_class(dns_class).query_type(RecordType::SOA);

    // build the message
    let mut message: Message = Message::new();
    message.id(rand::random()).message_type(MessageType::Query).op_code(OpCode::Update).recursion_desired(false);
    message.add_zone(zone);

    // the TTL shoudl be 0
    // the rdata must be null to delete all rrsets
    // the record type must be any
    let mut record = Record::with(name_of_records, RecordType::ANY, 0);

    // the class must be none for an rrset delete
    record.dns_class(DNSClass::ANY);

    message.add_update(record);

    // Extended dns
    {
      let edns = message.get_edns_mut();
      edns.set_max_payload(1500);
      edns.set_version(0);
    }

    // after all other updates to the message, sign it.
    try!(message.sign(signer, UTC::now().timestamp() as u32));

    self.send_message(&message)
  }

  /// Sends a message to the server for which this client was defined
  ///
  /// # Arguments
  ///
  /// * `message` - the message to deliver
  fn send_message(&self, message: &Message) -> ClientResult<Message> {
    // get the message bytes and send the query
    let mut buffer: Vec<u8> = Vec::with_capacity(512);
    {
      let mut encoder = BinEncoder::new(&mut buffer);
      try!(message.emit(&mut encoder));
    }

    // send the message and get the response from the connection.
    let resp_buffer = try!(self.client_connection.borrow_mut().send(buffer));

    let mut decoder = BinDecoder::new(&resp_buffer);
    let response = try!(Message::read(&mut decoder));

    if response.get_id() != message.get_id() { return Err(ClientErrorKind::IncorrectMessageId(response.get_id(), message.get_id()).into()); }

    Ok(response)
  }
}