1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
use crate::*;
use std::collections::{HashMap, HashSet};
use std::vec::Vec;

impl<P, C, S> Shell<P, C, S> {
    /// Creates the empty shell.
    #[inline(always)]
    pub const fn new() -> Shell<P, C, S> {
        Shell {
            face_list: Vec::new(),
        }
    }

    /// Creates the empty shell with space for at least `capacity` faces.
    #[inline(always)]
    pub fn with_capacity(capacity: usize) -> Shell<P, C, S> {
        Shell {
            face_list: Vec::with_capacity(capacity),
        }
    }

    /// Returns an iterator over the faces. Practically, an alias of `iter()`.
    #[inline(always)]
    pub fn face_iter(&self) -> FaceIter<P, C, S> { self.iter() }

    /// Returns a mutable iterator over the faces. Practically, an alias of `iter_mut()`.
    #[inline(always)]
    pub fn face_iter_mut(&mut self) -> FaceIterMut<P, C, S> { self.iter_mut() }

    /// Creates a consuming iterator. Practically, an alias of `into_iter()`.
    #[inline(always)]
    pub fn face_into_iter(self) -> FaceIntoIter<P, C, S> { self.face_list.into_iter() }

    /// Moves all the faces of `other` into `self`, leaving `other` empty.
    #[inline(always)]
    pub fn append(&mut self, other: &mut Shell<P, C, S>) {
        self.face_list.append(&mut other.face_list);
    }

    /// Returns a tuple.
    /// * The 0th component is whether the shell is regular or not.
    /// * The 1st component is whether the shell is oriented or not.
    /// * The 2nd component is whether the shell is closed or not.
    /// * The 3rd component is the set of all ids of the inner edge of the shell.
    fn inner_edge_extraction(&self) -> (bool, bool, bool, HashSet<EdgeID<C>>) {
        let mut all_edges: HashMap<EdgeID<C>, bool> = HashMap::with_capacity(self.face_list.len());
        let mut inner_edges: HashSet<EdgeID<C>> = HashSet::with_capacity(self.face_list.len());

        let mut regular = true;
        let mut oriented = true;
        for edge in self.face_iter().flat_map(Face::boundary_iters).flatten() {
            let new_ori = edge.absolute_front() == edge.front();
            if let Some(ori) = all_edges.insert(edge.id(), new_ori) {
                regular = regular && inner_edges.insert(edge.id());
                oriented = oriented && (new_ori != ori)
            }
        }

        let closed = all_edges.len() == inner_edges.len();
        (regular, oriented, closed, inner_edges)
    }
    /// Determines the shell conditions: non-regular, regular, oriented, or closed.  
    /// The complexity increases in proportion to the number of edges.
    ///
    /// Examples for each condition can be found on the page of
    /// [`ShellCondition`](./shell/enum.ShellCondition.html).
    pub fn shell_condition(&self) -> ShellCondition {
        let (regular, oriented, closed, _) = self.inner_edge_extraction();
        match (regular, oriented, closed) {
            (false, _, _) => ShellCondition::Irregular,
            (true, false, _) => ShellCondition::Regular,
            (true, true, false) => ShellCondition::Oriented,
            (true, true, true) => ShellCondition::Closed,
        }
    }

    /// Returns a vector of all boundaries as wires.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 6]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[1], &v[4], ()),
    ///     Edge::new(&v[2], &v[4], ()),
    ///     Edge::new(&v[2], &v[5], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[5], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[2], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[7], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[5], &edge[8], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[4], &edge[5].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// let boundary = shell.extract_boundaries()[0].clone();
    /// assert_eq!(
    ///     boundary,
    ///     Wire::from_iter(vec![&edge[0], &edge[3], &edge[7], &edge[8], &edge[6].inverse(), &edge[1].inverse()]),
    /// );
    /// ```
    /// # Remarks
    /// This method is optimized when the shell is oriented.
    /// Even if the shell is not oriented, all the edges of the boundary are extracted.
    /// However, the connected components of the boundary are split into several wires.
    pub fn extract_boundaries(&self) -> Vec<Wire<P, C>> {
        let (_, _, _, inner_edges) = self.inner_edge_extraction();
        let mut boundary_edges = Vec::new();
        let mut vemap: HashMap<Vertex<P>, Edge<P, C>> = HashMap::new();
        let edge_iter = self.face_iter().flat_map(Face::boundary_iters).flatten();
        for edge in edge_iter {
            if inner_edges.get(&edge.id()).is_none() {
                boundary_edges.push(edge.clone());
                vemap.insert(edge.front().clone(), edge.clone());
            }
        }
        let mut res = Vec::new();
        for edge in boundary_edges {
            if let Some(mut cursor) = vemap.remove(&edge.front()) {
                let mut wire = Wire::from(vec![cursor.clone()]);
                loop {
                    cursor = match vemap.remove(&cursor.back()) {
                        None => break,
                        Some(got) => {
                            wire.push_back(got.clone());
                            got.clone()
                        }
                    };
                }
                res.push(wire);
            }
        }
        res
    }

    /// Returns the adjacency matrix of vertices in the shell.
    ///
    /// For the returned hashmap `map` and each vertex `v`,
    /// the vector `map[&v]` cosists all vertices which is adjacent to `v`.
    /// # Exmaples
    /// ```
    /// use truck_topology::*;
    /// use std::collections::HashSet;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 4]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[0], &v[3], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[2], &v[3], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[4], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[2], &edge[4], &edge[3].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// let adjacency = shell.vertex_adjacency();
    /// let v0_ads_vec = adjacency.get(&v[0].id()).unwrap();
    /// let v0_ads: HashSet<&VertexID<()>> = HashSet::from_iter(v0_ads_vec);
    /// assert_eq!(v0_ads, HashSet::from_iter(vec![&v[2].id(), &v[3].id()]));
    /// ```
    pub fn vertex_adjacency(&self) -> HashMap<VertexID<P>, Vec<VertexID<P>>> {
        let mut adjacency: HashMap<VertexID<P>, Vec<VertexID<P>>> = HashMap::new();
        let mut done_edge: HashSet<EdgeID<C>> = HashSet::new();
        let edge_iter = self.face_iter().flat_map(|face| {
            face.absolute_boundaries()
                .iter()
                .flat_map(|wire| wire.edge_iter())
        });
        for edge in edge_iter {
            if !done_edge.insert(edge.id()) {
                continue;
            }
            let v0 = edge.front().id();
            let v1 = edge.back().id();
            adjacency.entry(v0).or_insert(Vec::new()).push(v1);
            adjacency.entry(v1).or_insert(Vec::new()).push(v0);
        }
        adjacency
    }

    /// Returns the adjacency matrix of faces in the shell.
    ///
    /// For the returned hashmap `map` and each face `face`,
    /// the vector `map[&face]` consists all faces adjacent to `face`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 6]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[1], &v[4], ()),
    ///     Edge::new(&v[2], &v[4], ()),
    ///     Edge::new(&v[2], &v[5], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[5], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[2], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[7], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[5], &edge[8], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[4], &edge[5].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// let face_adjacency = shell.face_adjacency();
    /// assert_eq!(face_adjacency[&shell[0]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[1]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[2]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[3]].len(), 3);
    /// ```
    pub fn face_adjacency(&self) -> HashMap<&Face<P, C, S>, Vec<&Face<P, C, S>>> {
        let mut adjacency: HashMap<&Face<P, C, S>, Vec<&Face<P, C, S>>> = HashMap::new();
        let mut edge_face_map: HashMap<EdgeID<C>, Vec<&Face<P, C, S>>> = HashMap::new();
        for face in self.face_iter() {
            let edge_iter = face
                .absolute_boundaries()
                .iter()
                .flat_map(|wire| wire.edge_iter());
            for edge in edge_iter {
                if let Some(vec) = edge_face_map.get_mut(&edge.id()) {
                    for tmp in vec {
                        adjacency.entry(face).or_insert(Vec::new()).push(tmp);
                        adjacency.entry(tmp).or_insert(Vec::new()).push(face);
                    }
                } else {
                    adjacency.entry(face).or_insert(Vec::new());
                    edge_face_map.insert(edge.id(), vec![face]);
                }
            }
        }
        adjacency
    }

    /// Returns whether the shell is connected or not.
    /// # Examples
    /// ```
    /// // The empty shell is connected.
    /// use truck_topology::*;
    /// assert!(Shell::<(), (), ()>::new().is_connected());
    /// ```
    /// ```
    /// // An example of a connected shell
    /// use truck_topology::*;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 4]);
    /// let shared_edge = Edge::new(&v[1], &v[2], ());
    /// let wire0 = Wire::from_iter(vec![
    ///     &Edge::new(&v[0], &v[1], ()),
    ///     &shared_edge,
    ///     &Edge::new(&v[2], &v[0], ()),
    /// ]);
    /// let face0 = Face::new(vec![wire0], ());
    /// let wire1 = Wire::from_iter(vec![
    ///     &Edge::new(&v[3], &v[1], ()),
    ///     &shared_edge,
    ///     &Edge::new(&v[2], &v[3], ()),
    /// ]);
    /// let face1 = Face::new(vec![wire1], ());
    /// let shell: Shell<_, _, _> = vec![face0, face1].into();
    /// assert!(shell.is_connected());
    /// ```
    /// ```
    /// // An example of a non-connected shell
    /// use truck_topology::*;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 6]);
    /// let wire0 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ())
    /// ]);
    /// let face0 = Face::new(vec![wire0], ());
    /// let wire1 = Wire::from_iter(vec![
    ///     &Edge::new(&v[3], &v[4], ()),
    ///     &Edge::new(&v[4], &v[5], ()),
    ///     &Edge::new(&v[5], &v[3], ())
    /// ]);
    /// let face1 = Face::new(vec![wire1], ());
    /// let shell: Shell<_, _, _> = vec![face0, face1].into();
    /// assert!(!shell.is_connected());
    /// ```
    pub fn is_connected(&self) -> bool {
        let mut adjacency = self.vertex_adjacency();
        for face in self {
            for wire in face.boundaries.windows(2) {
                let v0 = wire[0].front_vertex().unwrap();
                let v1 = wire[1].front_vertex().unwrap();
                adjacency.get_mut(&v0.id()).unwrap().push(v1.id());
                adjacency.get_mut(&v1.id()).unwrap().push(v0.id());
            }
        }
        check_connectivity(&mut adjacency)
    }

    /// Returns a vector consisting of shells of each connected components.
    /// # Examples
    /// ```
    /// use truck_topology::Shell;
    /// // The empty shell has no connected component.
    /// assert!(Shell::<(), (), ()>::new().connected_components().is_empty());
    /// ```
    /// # Remarks
    /// Since this method uses the face adjacency matrix, multiple components
    /// are perhaps generated even if the shell is connected. In that case,
    /// there is a pair of faces such that share vertices but not edges.
    /// ```
    /// use truck_topology::*;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 5]);
    /// let wire0 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ()),
    /// ]);
    /// let wire1 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[3], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[0], ()),
    /// ]);
    /// let shell = Shell::from(vec![
    ///     Face::new(vec![wire0], ()),
    ///     Face::new(vec![wire1], ()),
    /// ]);
    /// assert!(shell.is_connected());
    /// assert_eq!(shell.connected_components().len(), 2);
    /// ```
    pub fn connected_components(&self) -> Vec<Shell<P, C, S>> {
        let mut adjacency = self.face_adjacency();
        let components = create_components(&mut adjacency);
        components
            .into_iter()
            .map(|vec| vec.into_iter().map(|face| face.clone()).collect())
            .collect()
    }

    /// Returns the vector of all singular vertices.
    ///
    /// Here, we say that a vertex is singular if, for a sufficiently small neighborhood U of
    /// the vertex, the set U - {the vertex} is not connected.
    ///
    /// A regular, oriented, or closed shell becomes a manifold if and only if the shell has
    /// no singular vertices.
    /// # Examples
    /// ```
    /// // A regular manifold: Mobius bundle
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    ///
    /// let v = Vertex::news(&[(), (), (), ()]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[3], &v[2], ()),
    ///     Edge::new(&v[0], &v[3], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[3], &edge[4], &edge[2]]),
    ///     Wire::from_iter(vec![&edge[1], &edge[2], &edge[5], &edge[3].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// assert_eq!(shell.shell_condition(), ShellCondition::Regular);
    /// assert!(shell.singular_vertices().is_empty());
    /// ```
    /// ```
    /// // A closed and connected shell which has a singular vertex.
    /// use truck_topology::*;
    /// use truck_topology::shell::*;
    /// use std::iter::FromIterator;
    ///
    /// let v = Vertex::news(&[(); 7]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()), // 0
    ///     Edge::new(&v[0], &v[2], ()), // 1
    ///     Edge::new(&v[0], &v[3], ()), // 2
    ///     Edge::new(&v[1], &v[2], ()), // 3
    ///     Edge::new(&v[2], &v[3], ()), // 4
    ///     Edge::new(&v[3], &v[1], ()), // 5
    ///     Edge::new(&v[0], &v[4], ()), // 6
    ///     Edge::new(&v[0], &v[5], ()), // 7
    ///     Edge::new(&v[0], &v[6], ()), // 8
    ///     Edge::new(&v[4], &v[5], ()), // 9
    ///     Edge::new(&v[5], &v[6], ()), // 10
    ///     Edge::new(&v[6], &v[4], ()), // 11
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0].inverse(), &edge[1], &edge[3].inverse()]),
    ///     Wire::from_iter(vec![&edge[1].inverse(), &edge[2], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[0], &edge[5].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[4], &edge[5]]),
    ///     Wire::from_iter(vec![&edge[6].inverse(), &edge[7], &edge[9].inverse()]),
    ///     Wire::from_iter(vec![&edge[7].inverse(), &edge[8], &edge[10].inverse()]),
    ///     Wire::from_iter(vec![&edge[8].inverse(), &edge[6], &edge[11].inverse()]),
    ///     Wire::from_iter(vec![&edge[9], &edge[10], &edge[11]]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// assert_eq!(shell.shell_condition(), ShellCondition::Closed);
    /// assert!(shell.is_connected());
    /// assert_eq!(shell.singular_vertices(), vec![v[0].clone()]);
    /// ```
    pub fn singular_vertices(&self) -> Vec<Vertex<P>> {
        let mut vert_wise_adjacency: HashMap<Vertex<P>, HashMap<EdgeID<C>, Vec<EdgeID<C>>>> =
            HashMap::new();
        for face in self.face_iter() {
            let first_edge = &face.absolute_boundaries()[0][0];
            let mut edge_iter = face
                .absolute_boundaries()
                .iter()
                .flat_map(|wire| wire.edge_iter())
                .peekable();
            while let Some(edge) = edge_iter.next() {
                let adjacency = vert_wise_adjacency
                    .entry(edge.back().clone())
                    .or_insert(HashMap::new());
                let next_edge = *edge_iter.peek().unwrap_or(&first_edge);
                adjacency
                    .entry(edge.id())
                    .or_insert(Vec::new())
                    .push(next_edge.id());
                adjacency
                    .entry(next_edge.id())
                    .or_insert(Vec::new())
                    .push(edge.id());
            }
        }
        vert_wise_adjacency
            .into_iter()
            .filter_map(|(vertex, mut adjacency)| {
                Some(vertex).filter(|_| !check_connectivity(&mut adjacency))
            })
            .collect()
    }
}

impl<P: Tolerance, C: Curve<Point=P>, S: Surface<Point=C::Point, Vector=C::Vector, Curve=C>> Shell<P, C, S> {
    /// Returns the consistence of the geometry of end vertices
    /// and the geometry of edge.
    #[inline(always)]
    pub fn is_geometric_consistent(&self) -> bool {
        self.iter().all(|face| face.is_geometric_consistent())
    }
}

impl<P, C, S> Clone for Shell<P, C, S> {
    #[inline(always)]
    fn clone(&self) -> Shell<P, C, S> { Shell{ face_list: self.face_list.clone() } }
}

impl<P, C, S> From<Shell<P, C, S>> for Vec<Face<P, C, S>> {
    #[inline(always)]
    fn from(shell: Shell<P, C, S>) -> Vec<Face<P, C, S>> { shell.face_list }
}

impl<P, C, S> From<Vec<Face<P, C, S>>> for Shell<P, C, S> {
    #[inline(always)]
    fn from(faces: Vec<Face<P, C, S>>) -> Shell<P, C, S> { Shell { face_list: faces } }
}

impl<P, C, S> std::iter::FromIterator<Face<P, C, S>> for Shell<P, C, S> {
    #[inline(always)]
    fn from_iter<I: IntoIterator<Item = Face<P, C, S>>>(iter: I) -> Shell<P, C, S> {
        Shell {
            face_list: iter.into_iter().collect(),
        }
    }
}

impl<P, C, S> IntoIterator for Shell<P, C, S> {
    type Item = Face<P, C, S>;
    type IntoIter = std::vec::IntoIter<Face<P, C, S>>;
    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter { self.face_list.into_iter() }
}

impl<'a, P, C, S> IntoIterator for &'a Shell<P, C, S> {
    type Item = &'a Face<P, C, S>;
    type IntoIter = std::slice::Iter<'a, Face<P, C, S>>;
    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter { self.face_list.iter() }
}

impl<P, C, S> std::ops::Deref for Shell<P, C, S> {
    type Target = Vec<Face<P, C, S>>;
    #[inline(always)]
    fn deref(&self) -> &Vec<Face<P, C, S>> { &self.face_list }
}

impl<P, C, S> std::ops::DerefMut for Shell<P, C, S> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Vec<Face<P, C, S>> { &mut self.face_list }
}

/// The reference iterator over all faces in shells
pub type FaceIter<'a, P, C, S> = std::slice::Iter<'a, Face<P, C, S>>;
/// The mutable reference iterator over all faces in shells
pub type FaceIterMut<'a, P, C, S> = std::slice::IterMut<'a, Face<P, C, S>>;
/// The into iterator over all faces in shells
pub type FaceIntoIter<P, C, S> = std::vec::IntoIter<Face<P, C, S>>;

/// The shell conditions being determined by the half-edge model.
#[derive(PartialEq, Eq, Debug)]
pub enum ShellCondition {
    /// This shell is not regular.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 5]);
    /// let edge = [
    ///    Edge::new(&v[0], &v[1], ()),
    ///    Edge::new(&v[0], &v[2], ()),
    ///    Edge::new(&v[0], &v[3], ()),
    ///    Edge::new(&v[0], &v[4], ()),
    ///    Edge::new(&v[1], &v[2], ()),
    ///    Edge::new(&v[1], &v[3], ()),
    ///    Edge::new(&v[1], &v[4], ()),
    /// ];
    /// let wire = vec![
    ///    Wire::from_iter(vec![&edge[0], &edge[4], &edge[1].inverse()]),
    ///    Wire::from_iter(vec![&edge[0], &edge[5], &edge[2].inverse()]),
    ///    Wire::from_iter(vec![&edge[0], &edge[6], &edge[3].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// // The shell is irregular because three faces share edge[0].
    /// assert_eq!(shell.shell_condition(), ShellCondition::Irregular);
    /// ```
    Irregular,
    /// All edges are shared by at most two faces.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 6]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[1], &v[4], ()),
    ///     Edge::new(&v[2], &v[4], ()),
    ///     Edge::new(&v[2], &v[5], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[5], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[2], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[7], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[5], &edge[8], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2], &edge[5], &edge[4].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// // This shell is regular, but not oriented.
    /// // It is because the orientations of shell[0] and shell[3] are incompatible on edge[2].
    /// assert_eq!(shell.shell_condition(), ShellCondition::Regular);
    /// ```
    Regular,
    /// The orientations of faces are compatible.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 6]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1] ,()),
    ///     Edge::new(&v[0], &v[2] ,()),
    ///     Edge::new(&v[1], &v[2] ,()),
    ///     Edge::new(&v[1], &v[3] ,()),
    ///     Edge::new(&v[1], &v[4] ,()),
    ///     Edge::new(&v[2], &v[4] ,()),
    ///     Edge::new(&v[2], &v[5] ,()),
    ///     Edge::new(&v[3], &v[4] ,()),
    ///     Edge::new(&v[4], &v[5] ,()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[2], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[7], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[5], &edge[8], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[4], &edge[5].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// // The orientations of all faces in the shell are compatible on the shared edges.
    /// // This shell is not closed because edge[0] is included in only the 0th face.
    /// assert_eq!(shell.shell_condition(), ShellCondition::Oriented);
    /// ```
    Oriented,
    /// All edges are shared by two faces.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// use std::iter::FromIterator;
    /// let v = Vertex::news(&[(); 8]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1] ,()),
    ///     Edge::new(&v[1], &v[2] ,()),
    ///     Edge::new(&v[2], &v[3] ,()),
    ///     Edge::new(&v[3], &v[0] ,()),
    ///     Edge::new(&v[0], &v[4] ,()),
    ///     Edge::new(&v[1], &v[5] ,()),
    ///     Edge::new(&v[2], &v[6] ,()),
    ///     Edge::new(&v[3], &v[7] ,()),
    ///     Edge::new(&v[4], &v[5] ,()),
    ///     Edge::new(&v[5], &v[6] ,()),
    ///     Edge::new(&v[6], &v[7] ,()),
    ///     Edge::new(&v[7], &v[4] ,()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[1], &edge[2], &edge[3]]),
    ///     Wire::from_iter(vec![&edge[0].inverse(), &edge[4], &edge[8], &edge[5].inverse()]),
    ///     Wire::from_iter(vec![&edge[1].inverse(), &edge[5], &edge[9], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[6], &edge[10], &edge[7].inverse()]),
    ///     Wire::from_iter(vec![&edge[3].inverse(), &edge[7], &edge[11], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[8], &edge[9], &edge[10], &edge[11]]),
    /// ];
    /// let mut shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// shell[5].invert();
    /// assert_eq!(shell.shell_condition(), ShellCondition::Closed);
    /// ```
    Closed,
}

fn check_connectivity<T>(adjacency: &mut HashMap<T, Vec<T>>) -> bool
where T: Eq + Clone + Hash {
    create_one_component(adjacency);
    adjacency.is_empty()
}

fn create_components<T>(adjacency: &mut HashMap<T, Vec<T>>) -> Vec<Vec<T>>
where T: Eq + Clone + Hash {
    let mut res = Vec::new();
    loop {
        let component = create_one_component(adjacency);
        match component.is_empty() {
            true => break,
            false => res.push(component),
        }
    }
    res
}

fn create_one_component<T>(adjacency: &mut HashMap<T, Vec<T>>) -> Vec<T>
where T: Eq + Hash + Clone {
    let mut iter = adjacency.keys();
    let first = match iter.next() {
        Some(key) => key.clone(),
        None => return Vec::new(),
    };
    let mut stack = vec![first];
    let mut res = Vec::new();
    while !stack.is_empty() {
        let i = stack.pop().unwrap();
        if let Some(vec) = adjacency.remove(&i) {
            res.push(i);
            for j in vec {
                stack.push(j);
            }
        }
    }
    res
}