1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
use crate::*;
const PI: Rad<f64> = Rad(std::f64::consts::PI);

/// Creates and returns a vertex by a three dimensional point.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // put a vertex
/// let vertex = builder::vertex(Point3::new(1.0, 2.0, 3.0));
/// # assert_eq!(*vertex.lock_point().unwrap(), Point3::new(1.0, 2.0, 3.0));
/// ```
#[inline(always)]
pub fn vertex(pt: Point3) -> Vertex { Vertex::new(pt) }

/// Returns a line from `vertex0` to `vertex1`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // draw a line
/// let vertex0 = builder::vertex(Point3::new(1.0, 2.0, 3.0));
/// let vertex1 = builder::vertex(Point3::new(6.0, 5.0, 4.0));
/// let line = builder::line(&vertex0, &vertex1);
/// # let curve = line.oriented_curve();
/// # let pt0 = Point3::new(1.0, 2.0, 3.0);
/// # let pt1 = Point3::new(6.0, 5.0, 4.0);
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = i as f64 / N as f64;
/// #       assert!(curve.subs(t).near2(&(pt0 + t * (pt1 - pt0))));
/// # }
/// ```
#[inline(always)]
pub fn line(vertex0: &Vertex, vertex1: &Vertex) -> Edge {
    let curve = geom_impls::line(
        (*vertex0.lock_point().unwrap()).to_homogeneous(),
        (*vertex1.lock_point().unwrap()).to_homogeneous(),
    );
    Edge::new(vertex0, vertex1, NURBSCurve::new(curve))
}

/// Returns a circle arc from `vertex0` to `vertex1` via `transit`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // draw the unit upper semicircle
/// let vertex0 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let vertex1 = builder::vertex(Point3::new(-1.0, 0.0, 0.0));
/// let semi_circle = builder::circle_arc(&vertex0, &vertex1, Point3::new(0.0, 1.0, 0.0));
/// # let curve = semi_circle.oriented_curve();
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = curve.knot_vec()[0] + curve.knot_vec().range_length() * i as f64 / N as f64;
/// #       assert!(curve.subs(t).to_vec().magnitude().near(&1.0));
/// # }
/// ```
#[inline(always)]
pub fn circle_arc(vertex0: &Vertex, vertex1: &Vertex, transit: Point3) -> Edge {
    let curve = geom_impls::circle_arc_by_three_points(
        (*vertex0.lock_point().unwrap()).to_homogeneous(),
        (*vertex1.lock_point().unwrap()).to_homogeneous(),
        transit,
    );
    Edge::new(vertex0, vertex1, NURBSCurve::new(curve))
}

/// Returns a Bezier curve from `vertex0` to `vertex1` with inter control points `inter_points`.
/// # Examples
/// ```
/// use truck_modeling::*;
/// 
/// // draw a Bezier curve
/// let vertex0 = builder::vertex(Point3::origin());
/// let vertex1 = builder::vertex(Point3::new(3.0, 0.0, 0.0));
/// let inter_points = vec![Point3::new(1.0, 1.0, 0.0), Point3::new(2.0, -1.0, 0.0)];
/// let bezier = builder::bezier(&vertex0, &vertex1, inter_points);
/// # let curve = bezier.oriented_curve();
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = i as f64 / N as f64;
/// #       let pt = Point3::new(t * 3.0, 6.0 * t * t * t - 9.0 * t * t + 3.0 * t, 0.0);
/// #       assert!(curve.subs(t).near(&pt));
/// # }
/// ```
#[inline(always)]
pub fn bezier(vertex0: &Vertex, vertex1: &Vertex, mut inter_points: Vec<Point3>) -> Edge {
    let pt0 = *vertex0.lock_point().unwrap();
    let pt1 = *vertex1.lock_point().unwrap();
    let mut pre_ctrl_pts = vec![pt0];
    pre_ctrl_pts.append(&mut inter_points);
    pre_ctrl_pts.push(pt1);
    let ctrl_pts: Vec<_> = pre_ctrl_pts
        .into_iter()
        .map(|pt| pt.to_homogeneous())
        .collect();
    let knot_vec = KnotVec::bezier_knot(ctrl_pts.len() - 1);
    let curve = BSplineCurve::new(knot_vec, ctrl_pts);
    Edge::new(vertex0, vertex1, NURBSCurve::new(curve))
}

/// Returns a homotopic face from `edge0` to `edge1`.
/// # Examples
/// ```
/// use truck_modeling::*;
/// 
/// // homotopy between skew lines
/// let v0 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v1 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v2 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v3 = builder::vertex(Point3::new(0.0, 1.0, 1.0));
/// let line0 = builder::line(&v0, &v1);
/// let line1 = builder::line(&v2, &v3);
/// let homotopy = builder::homotopy(&line0, &line1);
/// # let surface = homotopy.oriented_surface();
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       for j in 0..=N {
/// #           let s = i as f64 / N as f64;
/// #           let t = j as f64 / N as f64;
/// #           let pt = Point3::new(s * (1.0 - t), t, s * t);
/// #           assert!(surface.subs(s, t).near(&pt));
/// #       }
/// # }
/// ```
#[inline(always)]
pub fn homotopy(edge0: &Edge, edge1: &Edge) -> Face {
    let wire: Wire = vec![
        edge0.clone(),
        line(edge0.back(), edge1.back()),
        edge1.inverse(),
        line(edge1.front(), edge0.front()),
    ]
    .into();
    let curve0 = edge0.oriented_curve().into_non_rationalized();
    let curve1 = edge1.oriented_curve().into_non_rationalized();
    let surface = BSplineSurface::homotopy(curve0, curve1);
    Face::new(vec![wire], NURBSSurface::new(surface))
}

/// Try attatiching a plane whose boundary is `wire`.
/// Todo: Define the crate error and make return value `Result<Face>`!
/// # Examples
/// ```
/// use truck_modeling::*;
/// 
/// // make a disk by attaching a plane into circle
/// let vertex = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let circle = builder::rsweep(&vertex, Point3::origin(), Vector3::unit_y(), Rad(7.0));
/// let disk = builder::try_attach_plane(&vec![circle]).expect("failed to attach plane.");
/// # let surface = disk.oriented_surface();
/// # let normal = surface.normal(0.5, 0.5);
/// # assert!(normal.near(&Vector3::unit_y()));
/// ```
/// # Remarks
/// If wires are not closed or not in one plane, then return `None`.
/// ```
/// use truck_modeling::*;
/// 
/// let v0 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v1 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v2 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v3 = builder::vertex(Point3::new(0.0, 0.0, 1.0));
/// let wire: Wire = vec![
///     builder::line(&v0, &v1),
///     builder::line(&v1, &v2),
/// ]
/// .into();
/// let mut wires = vec![wire];
/// // failed to attach plane, because wire is not closed.
/// assert!(builder::try_attach_plane(&wires).is_none());
/// 
/// wires[0].push_back(builder::line(&v2, &v3));
/// wires[0].push_back(builder::line(&v3, &v0));
/// // failed to attach plane, because wire is not in the plane.
/// assert!(builder::try_attach_plane(&wires).is_none());
/// 
/// wires[0].pop_back();
/// wires[0].pop_back();
/// wires[0].push_back(builder::line(&v2, &v0));
/// // sucess in attaching plane!
/// assert!(builder::try_attach_plane(&wires).is_some());
/// ```
#[inline(always)]
pub fn try_attach_plane(wires: &Vec<Wire>) -> Option<Face> {
    let pts = wires
        .iter()
        .flatten()
        .flat_map(|edge| {
            edge.oriented_curve()
                .control_points()
                .clone()
                .into_iter()
                .map(|pt| pt.to_point())
        })
        .collect::<Vec<_>>();
    let surface = NURBSSurface::new(geom_impls::attach_plane(pts)?);
    Face::try_new(wires.clone(), surface).ok()
}

/// Returns another topology whose points, curves, and surfaces are cloned.
#[inline(always)]
pub fn clone<T: Mapped<Point3, NURBSCurve, NURBSSurface>>(elem: &T) -> T {
    elem.topological_clone()
}

/// Returns a transformed vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn transformed<T: Mapped<Point3, NURBSCurve, NURBSSurface>>(elem: &T, mat: Matrix4) -> T {
    elem.mapped(
        &move |pt: &Point3| mat.transform_point(*pt),
        &move |curve: &NURBSCurve| NURBSCurve::new(mat * curve.non_rationalized()),
        &move |surface: &NURBSSurface| NURBSSurface::new(mat * surface.non_rationalized()),
    )
}

/// Returns a translated vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn translated<T: Mapped<Point3, NURBSCurve, NURBSSurface>>(elem: &T, vector: Vector3) -> T {
    transformed(elem, Matrix4::from_translation(vector))
}

/// Returns a rotated vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn rotated<T: Mapped<Point3, NURBSCurve, NURBSSurface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: Rad<f64>,
) -> T {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, angle);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    transformed(elem, mat2 * mat1 * mat0)
}

/// Returns a scaled vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn scaled<T: Mapped<Point3, NURBSCurve, NURBSSurface>>(
    elem: &T,
    origin: Point3,
    scalars: Vector3,
) -> T {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_nonuniform_scale(scalars[0], scalars[1], scalars[2]);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    transformed(elem, mat2 * mat1 * mat0)
}

/// Sweeps a vertex, an edge, a wire, a face, or a shell by a vector.
/// # Examples
/// ```
/// use truck_modeling::*;
/// let vertex: Vertex = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let line: Edge = builder::tsweep(&vertex, Vector3::unit_x());
/// let square: Face = builder::tsweep(&line, Vector3::unit_y());
/// let cube: Solid = builder::tsweep(&square, Vector3::unit_z());
/// #
/// # let b_shell = &cube.boundaries()[0];
/// # assert_eq!(b_shell.len(), 6); // This solid is a cube!
/// # assert!(cube.is_geometric_consistent());
/// #
/// # let b_loop = &b_shell[0].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 0.0, 0.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 1.0, 0.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 1.0, 0.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 0.0, 0.0));
/// # assert_eq!(loop_iter.next(), None);
/// #
/// # let b_loop = &b_shell[3].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 1.0, 0.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 1.0, 0.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 1.0, 1.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next(), None);
/// #
/// # let b_loop = &b_shell[5].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 0.0, 1.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 0.0, 1.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(1.0, 1.0, 1.0));
/// # assert_eq!(*loop_iter.next().unwrap().lock_point().unwrap(), Point3::new(0.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next(), None);
/// ```
pub fn tsweep<T: Sweep<Point3, NURBSCurve, NURBSSurface>>(elem: &T, vector: Vector3) -> T::Swept {
    let trsl = Matrix4::from_translation(vector);
    elem.sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| NURBSCurve::new(trsl * curve.non_rationalized()),
        &move |surface| NURBSSurface::new(trsl * surface.non_rationalized()),
        &move |pt0, pt1| {
            NURBSCurve::new(geom_impls::line(pt0.to_homogeneous(), pt1.to_homogeneous()))
        },
        &move |curve0, curve1| {
            NURBSSurface::new(BSplineSurface::homotopy(
                curve0.clone().into_non_rationalized(),
                curve1.clone().into_non_rationalized(),
            ))
        },
    )
}

/// Sweeps a vertex, an edge, a wire, a face, or a shell by the rotation.
/// # Details
/// If the absolute value of `angle` is more than 2π rad, then the result is closed shape.
/// For example, the result of sweeping a disk is a bent cylinder if `angle` is less than 2π rad
/// and a solid torus if `angle` is more than 2π rad.
/// # Examples
/// ```
/// // Torus
/// use truck_modeling::*;
/// const PI: Rad<f64> = Rad(std::f64::consts::PI);
///
/// let v: Vertex = builder::vertex(Point3::new(3.0, 0.0, 0.0));
/// let circle: Wire = builder::rsweep(&v, Point3::new(2.0, 0.0, 0.0), Vector3::unit_z(), PI * 2.0);
/// let torus: Shell = builder::rsweep(&circle, Point3::origin(), Vector3::unit_y(), PI * 2.0);
/// let solid: Solid = Solid::new(vec![torus]);
/// #
/// # assert!(solid.is_geometric_consistent());
/// # const N: usize = 100;
/// # let shell = &solid.boundaries()[0];
/// # for face in shell.iter() {
/// #   let surface = face.lock_surface().unwrap().clone();
/// #   for i in 0..=N {
/// #       for j in 0..=N {
/// #           let u = i as f64 / N as f64;
/// #           let v = j as f64 / N as f64;
/// #           let pt = surface.subs(u, v);
/// #
/// #           // this surface is a part of torus.
/// #           let tmp = f64::sqrt(pt[0] * pt[0] + pt[2] * pt[2]) - 2.0;
/// #           let res = tmp * tmp + pt[1] * pt[1];
/// #           assert!(Tolerance::near(&res, &1.0));
/// #       }
/// #    }
/// # }
/// ```
/// ```
/// // Modeling a pipe.
/// use truck_modeling::*;
/// const PI: Rad<f64> = Rad(std::f64::consts::PI);
///
/// // Creates the base circle
/// let v: Vertex = builder::vertex(Point3::new(1.0, 0.0, 4.0));
/// let circle: Wire = builder::rsweep(&v, Point3::new(2.0, 0.0, 4.0), -Vector3::unit_z(), PI * 2.0);
///
/// // the result shell of the pipe.
/// let mut pipe: Shell = Shell::new();
///
/// // Draw the first line pipe
/// let mut first_line_part: Shell = builder::tsweep(&circle, Vector3::new(0.0, 0.0, -4.0));
/// pipe.append(&mut first_line_part);
///
/// // Get the new wire
/// let boundaries: Vec<Wire> = pipe.extract_boundaries();
/// let another_circle: Wire = boundaries.into_iter().find(|wire| wire != &circle).unwrap().inverse();
///
/// // Draw the bent part
/// let mut bend_part: Shell = builder::rsweep(
///     &another_circle,
///     Point3::origin(),
///     Vector3::unit_y(),
///     PI / 2.0,
/// );
/// # let surface = bend_part[0].lock_surface().unwrap().clone();
/// pipe.append(&mut bend_part);
///
/// // Get the new wire
/// let boundaries: Vec<Wire> = pipe.extract_boundaries();
/// let another_circle: Wire = boundaries.into_iter().find(|wire| wire != &circle).unwrap().inverse();
///
/// // Draw the second line pipe
/// let mut second_line_part: Shell = builder::tsweep(&another_circle, Vector3::new(-4.0, 0.0, 0.0));
/// pipe.append(&mut second_line_part);
///
/// assert_eq!(pipe.shell_condition(), ShellCondition::Oriented);
/// # assert!(pipe.is_geometric_consistent());
/// # const N: usize = 100;
/// # for i in 0..=N {
/// #    for j in 0..=N {
/// #        let u = i as f64 / N as f64;
/// #        let v = j as f64 / N as f64;
/// #        let pt = surface.subs(u, v);
/// #
/// #        // the y coordinate is positive.
/// #        //assert!(pt[1] >= 0.0);
/// #
/// #        // this surface is a part of torus.
/// #        let tmp = f64::sqrt(pt[0] * pt[0] + pt[2] * pt[2]) - 2.0;
/// #        let res = tmp * tmp + pt[1] * pt[1];
/// #        assert!(Tolerance::near(&res, &1.0));
/// #    }
/// # }
/// ```
#[inline(always)]
pub fn rsweep<T: ClosedSweep<Point3, NURBSCurve, NURBSSurface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: Rad<f64>,
) -> T::Swept {
    if angle.0.abs() < 2.0 * PI.0 {
        partial_rsweep(elem, origin, axis, angle)
    } else if angle.0 > 0.0 {
        whole_rsweep(elem, origin, axis)
    } else {
        whole_rsweep(elem, origin, -axis)
    }
}

fn partial_rsweep<T: MultiSweep<Point3, NURBSCurve, NURBSSurface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: Rad<f64>,
) -> T::Swept {
    let division = if angle.0.abs() < PI.0 { 1 } else { 2 };
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, angle / division as f64);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    let trsl = mat2 * mat1 * mat0;
    elem.multi_sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| NURBSCurve::new(trsl * curve.non_rationalized()),
        &move |surface| NURBSSurface::new(trsl * surface.non_rationalized()),
        &move |pt, _| {
            NURBSCurve::new(geom_impls::circle_arc(
                pt.to_homogeneous(),
                origin,
                axis,
                angle / division as f64,
            ))
        },
        &move |curve, _| {
            NURBSSurface::new(geom_impls::rsweep_surface(
                curve.non_rationalized(),
                origin,
                axis,
                angle / division as f64,
            ))
        },
        division,
    )
}

fn whole_rsweep<T: ClosedSweep<Point3, NURBSCurve, NURBSSurface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
) -> T::Swept {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, PI);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    let trsl = mat2 * mat1 * mat0;
    elem.closed_sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| NURBSCurve::new(trsl * curve.non_rationalized()),
        &move |surface| NURBSSurface::new(trsl * surface.non_rationalized()),
        &move |pt, _| {
            NURBSCurve::new(geom_impls::circle_arc(
                pt.to_homogeneous(),
                origin,
                axis,
                PI,
            ))
        },
        &move |curve, _| {
            NURBSSurface::new(geom_impls::rsweep_surface(
                curve.non_rationalized(),
                origin,
                axis,
                PI,
            ))
        },
        2,
    )
}

#[test]
fn partial_torus() {
    let v = vertex(Point3::new(0.5, 0.0, 0.0));
    let w = rsweep(&v, Point3::new(0.75, 0.0, 0.0), Vector3::unit_y(), Rad(7.0));
    let face = try_attach_plane(&vec![w]).unwrap();
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(2.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(5.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(-2.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(-5.0));
    assert!(torus.is_geometric_consistent());
}