1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Geometrical structs: knot vector, B-spline and NURBS

#![warn(
    missing_docs,
    missing_debug_implementations,
    trivial_casts,
    trivial_numeric_casts,
    unsafe_code,
    unstable_features,
    unused_import_braces,
    unused_qualifications
)]

extern crate serde;
extern crate truck_base;
use serde::{Deserialize, Serialize};
use std::fmt::Debug;
use truck_base::bounding_box::Bounded;

/// re-export `truck_base`
pub mod base {
    pub use truck_base::bounding_box::*;
    pub use truck_base::cgmath64::*;
    pub use truck_base::geom_traits::*;
    pub use truck_base::tolerance::*;
}
pub use base::*;

/// knot vector
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct KnotVec(Vec<f64>);

/// B-spline curve
/// # Examples
/// ```
/// use truck_geometry::*;
///
/// // the knot vector
/// let knot_vec = KnotVec::from(
///     vec![0.0, 0.0, 0.0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1.0, 1.0, 1.0]
/// );
///
/// // sign up the control points in the vector of all points
/// let ctrl_pts = vec![ // the vector of the indices of control points
///     Vector4::new(0.0, -2.0, 0.0, 2.0),
///     Vector4::new(1.0, -1.0, 0.0, 1.0),
///     Vector4::new(1.0, 0.0, 0.0, 1.0),
///     Vector4::new(1.0, 1.0, 0.0, 1.0),
///     Vector4::new(0.0, 2.0, 0.0, 2.0),
///     Vector4::new(-1.0, 1.0, 0.0, 1.0),
///     Vector4::new(-1.0, 0.0, 0.0, 1.0),
///     Vector4::new(-1.0, -1.0, 0.0, 1.0),
///     Vector4::new(0.0, -2.0, 0.0, 2.0),
/// ];
///
/// // construct the B-spline curve
/// let bspline = BSplineCurve::new(knot_vec, ctrl_pts);
///
/// // This B-spline curve is a nurbs representation of the unit circle.
/// const N : usize = 100; // sample size in test
/// for i in 0..N {
///     let t = 1.0 / (N as f64) * (i as f64);
///     let v = bspline.subs(t); // We can use the instances as a function.
///     let c = (v[0] / v[3]).powi(2) + (v[1] / v[3]).powi(2);
///     f64::assert_near2(&c, &1.0);
/// }
/// ```
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct BSplineCurve<V> {
    knot_vec: KnotVec,      // the knot vector
    control_points: Vec<V>, // the indices of control points
}

/// NURBS curve
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct NURBSCurve<V>(BSplineCurve<V>);

/// NURBS surface
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct NURBSSurface<V>(BSplineSurface<V>);

/// Curve for the recursive concatting.
/// # Examples
/// ```
/// use truck_geometry::*;
/// use std::convert::TryInto;
/// let mut cc = CurveCollector::<Vector2>::Singleton;
/// cc.concat(&mut BSplineCurve::new(
///     KnotVec::from(vec![0.0, 0.0, 1.0, 1.0]),
///     vec![Vector2::new(0.0, 0.0), Vector2::new(1.0, 1.0)],
/// ));
/// cc.concat(&mut BSplineCurve::new(
///     KnotVec::from(vec![1.0, 1.0, 2.0, 2.0]),
///     vec![Vector2::new(1.0, 1.0), Vector2::new(2.0, 2.0)],
/// ));
/// let res: BSplineCurve<Vector2> = cc.try_into().unwrap();
/// let line = BSplineCurve::new(
///     KnotVec::from(vec![0.0, 0.0, 2.0, 2.0]),
///     vec![Vector2::new(0.0, 0.0), Vector2::new(2.0, 2.0)],
/// );
/// assert!(res.near2_as_curve(&line));
/// ```
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub enum CurveCollector<V> {
    /// the empty curve
    Singleton,
    /// a non-empty curve
    Curve(BSplineCurve<V>),
}

/// B-spline surface
/// # Examples
/// ```
/// use truck_geometry::*;
/// const N : usize = 100; // sample size in test
///
/// // the knot vectors
/// let knot_vec0 = KnotVec::bezier_knot(3);
/// let knot_vec1 = KnotVec::from(
///     vec![0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0]
/// );
/// let knot_vecs = (knot_vec0, knot_vec1);
///
/// // the control points
/// let mut v = vec![vec![Vector4::zero(); 7]; 4];
/// v[0][0] = Vector4::new(0.0, 0.0, 1.0, 1.0);
/// v[0][1] = &v[0][0] / 3.0;
/// v[0][2] = v[0][1].clone();
/// v[0][3] = v[0][0].clone();
/// v[0][4] = v[0][1].clone();
/// v[0][5] = v[0][1].clone();
/// v[0][6] = v[0][0].clone();
/// v[1][0] = Vector4::new(2.0, 0.0, 1.0, 1.0) / 3.0;
/// v[1][1] = Vector4::new(2.0, 4.0, 1.0, 1.0) / 9.0;
/// v[1][2] = Vector4::new(-2.0, 4.0, 1.0, 1.0) / 9.0;
/// v[1][3] = Vector4::new(-2.0, 0.0, 1.0, 1.0) / 3.0;
/// v[1][4] = Vector4::new(-2.0, -4.0, 1.0, 1.0) / 9.0;
/// v[1][5] = Vector4::new(2.0, -4.0, 1.0, 1.0) / 9.0;
/// v[1][6] = Vector4::new(2.0, 0.0, 1.0, 1.0) / 3.0;
/// v[2][0] = Vector4::new(2.0, 0.0, -1.0, 1.0) / 3.0;
/// v[2][1] = Vector4::new(2.0, 4.0, -1.0, 1.0) / 9.0;
/// v[2][2] = Vector4::new(-2.0, 4.0, -1.0, 1.0) / 9.0;
/// v[2][3] = Vector4::new(-2.0, 0.0, -1.0, 1.0) / 3.0;
/// v[2][4] = Vector4::new(-2.0, -4.0, -1.0, 1.0) / 9.0;
/// v[2][5] = Vector4::new(2.0, -4.0, -1.0, 1.0) / 9.0;
/// v[2][6] = Vector4::new(2.0, 0.0, -1.0, 1.0) / 3.0;
/// v[3][0] = Vector4::new(0.0, 0.0, -1.0, 1.0);
/// v[3][1] = &v[3][0] / 3.0;
/// v[3][2] = v[3][1].clone();
/// v[3][3] = v[3][0].clone();
/// v[3][4] = v[3][1].clone();
/// v[3][5] = v[3][1].clone();
/// v[3][6] = v[3][0].clone();
///
/// // cunstruct the B-spline curve
/// let bspline = BSplineSurface::new(knot_vecs, v);
///
/// // This B-spline curve is a nurbs representation of the unit sphere.
/// for i in 0..N {
///     for j in 0..N {
///         let u = 1.0 / (N as f64) * (i as f64);
///         let v = 1.0 / (N as f64) * (j as f64);
///         let v = bspline.subs(u, v); // We can use the instances as a function.
///         let c = (v[0] / v[3]).powi(2) + (v[1] / v[3]).powi(2) + (v[2] / v[3]).powi(2);
///         f64::assert_near2(&c, &1.0);
///     }
/// }
/// ```
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct BSplineSurface<V> {
    knot_vecs: (KnotVec, KnotVec),
    control_points: Vec<Vec<V>>,
}

/// Error handler for [`Error`](./errors/enum.Error.html)
pub type Result<T> = std::result::Result<T, crate::errors::Error>;

#[doc(hidden)]
pub mod bspcurve;
/// Defines some iterators on control points of B-spline surface.
pub mod bspsurface;
/// Enumerats `Error`.
pub mod errors;
#[doc(hidden)]
pub mod knot_vec;
#[doc(hidden)]
pub mod nurbscurve;
#[doc(hidden)]
pub mod nurbssurface;

#[doc(hidden)]
#[inline(always)]
pub fn inv_or_zero(delta: f64) -> f64 {
    if delta.so_small() {
        0.0
    } else {
        1.0 / delta
    }
}