[][src]Struct trie::set::Set

pub struct Set { /* fields omitted */ }

A set implemented as a radix trie.

Examples

let mut set = trie::Set::new();
set.insert(6);
set.insert(28);
set.insert(6);

assert_eq!(set.len(), 2);

if !set.contains(&3) {
    println!("3 is not in the set");
}

// Print contents in order
for x in set.iter() {
    println!("{}", x);
}

set.remove(&6);
assert_eq!(set.len(), 1);

set.clear();
assert!(set.is_empty());

Implementations

impl Set[src]

pub fn new() -> Set[src]

Creates an empty set.

Examples

let mut set = trie::Set::new();

pub fn each_reverse<F>(&self, f: F) -> bool where
    F: FnMut(&usize) -> bool
[src]

Visits all values in reverse order. Aborts traversal when f returns false. Returns true if f returns true for all elements.

Examples

let set: trie::Set = [1, 2, 3, 4, 5].iter().cloned().collect();

let mut vec = vec![];
assert_eq!(true, set.each_reverse(|&x| { vec.push(x); true }));
assert_eq!(vec, [5, 4, 3, 2, 1]);

// Stop when we reach 3
let mut vec = vec![];
assert_eq!(false, set.each_reverse(|&x| { vec.push(x); x != 3 }));
assert_eq!(vec, [5, 4, 3]);

pub fn iter(&self) -> Iter[src]

Gets an iterator over the values in the set, in sorted order.

Examples

let mut set = trie::Set::new();
set.insert(3);
set.insert(2);
set.insert(1);
set.insert(2);

// Print 1, 2, 3
for x in set.iter() {
    println!("{}", x);
}

pub fn lower_bound(&self, val: usize) -> Range[src]

Gets an iterator pointing to the first value that is not less than val. If all values in the set are less than val an empty iterator is returned.

Examples

let set: trie::Set = [2, 4, 6, 8].iter().cloned().collect();
assert_eq!(set.lower_bound(4).next(), Some(4));
assert_eq!(set.lower_bound(5).next(), Some(6));
assert_eq!(set.lower_bound(10).next(), None);

pub fn upper_bound(&self, val: usize) -> Range[src]

Gets an iterator pointing to the first value that key is greater than val. If all values in the set are less than or equal to val an empty iterator is returned.

Examples

let set: trie::Set = [2, 4, 6, 8].iter().cloned().collect();
assert_eq!(set.upper_bound(4).next(), Some(6));
assert_eq!(set.upper_bound(5).next(), Some(6));
assert_eq!(set.upper_bound(10).next(), None);

pub fn difference<'a>(&'a self, other: &'a Set) -> Difference<'a>[src]

Visits the values representing the difference, in ascending order.

Examples

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1 then 2
}

let diff1: trie::Set = a.difference(&b).collect();
assert_eq!(diff1, [1, 2].iter().cloned().collect());

// Note that difference is not symmetric,
// and `b - a` means something else:
let diff2: trie::Set = b.difference(&a).collect();
assert_eq!(diff2, [4, 5].iter().cloned().collect());

pub fn symmetric_difference<'a>(
    &'a self,
    other: &'a Set
) -> SymmetricDifference<'a>
[src]

Visits the values representing the symmetric difference, in ascending order.

Examples

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

// Print 1, 2, 4, 5 in ascending order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

let diff1: trie::Set = a.symmetric_difference(&b).collect();
let diff2: trie::Set = b.symmetric_difference(&a).collect();

assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 2, 4, 5].iter().cloned().collect());

pub fn intersection<'a>(&'a self, other: &'a Set) -> Intersection<'a>[src]

Visits the values representing the intersection, in ascending order.

Examples

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [2, 3, 4].iter().cloned().collect();

// Print 2, 3 in ascending order.
for x in a.intersection(&b) {
    println!("{}", x);
}

let diff: trie::Set = a.intersection(&b).collect();
assert_eq!(diff, [2, 3].iter().cloned().collect());

pub fn union<'a>(&'a self, other: &'a Set) -> Union<'a>[src]

Visits the values representing the union, in ascending order.

Examples

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

// Print 1, 2, 3, 4, 5 in ascending order.
for x in a.union(&b) {
    println!("{}", x);
}

let diff: trie::Set = a.union(&b).collect();
assert_eq!(diff, [1, 2, 3, 4, 5].iter().cloned().collect());

pub fn len(&self) -> usize[src]

Return the number of elements in the set

Examples

let mut v = trie::Set::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns true if the set contains no elements

Examples

let mut v = trie::Set::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());

pub fn clear(&mut self)[src]

Clears the set, removing all values.

Examples

let mut v = trie::Set::new();
v.insert(1);
v.clear();
assert!(v.is_empty());

pub fn contains(&self, value: &usize) -> bool[src]

Returns true if the set contains a value.

Examples

let set: trie::Set = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);

pub fn is_disjoint(&self, other: &Set) -> bool[src]

Returns true if the set has no elements in common with other. This is equivalent to checking for an empty intersection.

Examples

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let mut b = trie::Set::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);

pub fn is_subset(&self, other: &Set) -> bool[src]

Returns true if the set is a subset of another.

Examples

let sup: trie::Set = [1, 2, 3].iter().cloned().collect();
let mut set = trie::Set::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);

pub fn is_superset(&self, other: &Set) -> bool[src]

Returns true if the set is a superset of another.

Examples

let sub: trie::Set = [1, 2].iter().cloned().collect();
let mut set = trie::Set::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);

pub fn insert(&mut self, value: usize) -> bool[src]

Adds a value to the set. Returns true if the value was not already present in the set.

Examples

let mut set = trie::Set::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);

pub fn remove(&mut self, value: &usize) -> bool[src]

Removes a value from the set. Returns true if the value was present in the set.

Examples

let mut set = trie::Set::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);

Trait Implementations

impl<'a, 'b> BitAnd<&'b Set> for &'a Set[src]

type Output = Set

The resulting type after applying the & operator.

fn bitand(self, rhs: &Set) -> Set[src]

Returns the intersection of self and rhs as a new set.

Example

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [2, 3, 4].iter().cloned().collect();

let set: trie::Set = &a & &b;
let v: Vec<usize> = set.iter().collect();
assert_eq!(v, [2, 3]);

impl<'a, 'b> BitOr<&'b Set> for &'a Set[src]

type Output = Set

The resulting type after applying the | operator.

fn bitor(self, rhs: &Set) -> Set[src]

Returns the union of self and rhs as a new set.

Example

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

let set: trie::Set = &a | &b;
let v: Vec<usize> = set.iter().collect();
assert_eq!(v, [1, 2, 3, 4, 5]);

impl<'a, 'b> BitXor<&'b Set> for &'a Set[src]

type Output = Set

The resulting type after applying the ^ operator.

fn bitxor(self, rhs: &Set) -> Set[src]

Returns the symmetric difference of self and rhs as a new set.

Example

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

let set: trie::Set = &a ^ &b;
let v: Vec<usize> = set.iter().collect();
assert_eq!(v, [1, 2, 4, 5]);

impl Clone for Set[src]

impl Debug for Set[src]

impl Default for Set[src]

impl Eq for Set[src]

impl Extend<usize> for Set[src]

impl FromIterator<usize> for Set[src]

impl Hash for Set[src]

impl<'a> IntoIterator for &'a Set[src]

type Item = usize

The type of the elements being iterated over.

type IntoIter = Iter<'a>

Which kind of iterator are we turning this into?

impl Ord for Set[src]

impl PartialEq<Set> for Set[src]

impl PartialOrd<Set> for Set[src]

impl StructuralEq for Set[src]

impl StructuralPartialEq for Set[src]

impl<'a, 'b> Sub<&'b Set> for &'a Set[src]

type Output = Set

The resulting type after applying the - operator.

fn sub(self, rhs: &Set) -> Set[src]

Returns the difference of self and rhs as a new set.

Example

let a: trie::Set = [1, 2, 3].iter().cloned().collect();
let b: trie::Set = [3, 4, 5].iter().cloned().collect();

let set: trie::Set = &a - &b;
let v: Vec<usize> = set.iter().collect();
assert_eq!(v, [1, 2]);

Auto Trait Implementations

impl RefUnwindSafe for Set

impl Send for Set

impl Sync for Set

impl Unpin for Set

impl UnwindSafe for Set

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.