1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
use crate::algo::traversal::univocal_traversal::UnivocalIterator;
use crate::interface::{GraphBase, NodeOrEdge, StaticGraph};
use traitsequence::interface::Sequence;

/// A sequence of nodes in a graph, where each consecutive pair of nodes is connected by an edge.
pub trait NodeWalk<'a, Graph: GraphBase, NodeSubwalk: NodeWalk<'a, Graph, NodeSubwalk> + ?Sized>:
    Sequence<'a, Graph::NodeIndex, NodeSubwalk>
where
    Graph::NodeIndex: 'a,
{
    /// Computes the trivial heart of the walk, or returns `None` if the walk is non-trivial.
    /// The heart is returned as the index of the last split node and the index of the first join node of the walk.
    /// These are not part of the heart.
    fn compute_trivial_heart(&'a self, graph: &Graph) -> Option<(usize, usize)>
    where
        Graph: StaticGraph,
    {
        let mut last_split = 0;
        let mut first_join = self.len() - 1;
        for (i, &node) in self.iter().enumerate().take(self.len() - 1).skip(1) {
            if graph.is_split_node(node) {
                last_split = last_split.max(i);
            }
            if graph.is_join_node(node) {
                first_join = first_join.min(i);
            }
        }

        if last_split < first_join
            && (last_split > 0 || first_join < self.len() - 1 || self.len() == 2)
        {
            Some((last_split, first_join))
        } else {
            None
        }
    }

    /// Compute the amount of nodes in the trivial heart, or returns `None` if the walk is non-trivial.
    /// Recall that a heart is a walk from arc to arc.
    fn compute_trivial_heart_node_len(&'a self, graph: &Graph) -> Option<usize>
    where
        Graph: StaticGraph,
    {
        if let Some((start, end)) = self.compute_trivial_heart(graph) {
            Some(end - start - 1)
        } else {
            None
        }
    }

    /// Returns true if this walk is non-trivial.
    fn is_non_trivial(&'a self, graph: &Graph) -> bool
    where
        Graph: StaticGraph,
    {
        self.compute_trivial_heart(graph).is_none()
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    fn compute_univocal_extension<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset(graph)
            .1
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    /// This method handles not strongly connected graphs by disallowing L and R to repeat nodes.
    fn compute_univocal_extension_non_scc<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset_non_scc(graph)
            .1
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Node(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.first().unwrap() {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Node(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.last().unwrap() {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    /// This method handles not strongly connected graphs by disallowing L and R to repeat nodes.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset_non_scc<
        ResultWalk: From<Vec<Graph::NodeIndex>>,
    >(
        &'a self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Node(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.first().unwrap() || result.contains(&node) {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());
        let right_wing_offset = result.len();

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Node(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.last().unwrap() || result[right_wing_offset..].contains(&node)
                    {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Returns the edge walk represented by this node walk.
    /// If there is a consecutive pair of nodes with a multiedge, then None is returned.
    /// If this walk contains less than two nodes, then None is returned.
    /// If there is a consecutive pair of node not connected by an edge, then this method panics.
    fn clone_as_edge_walk<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> Option<ResultWalk>
    where
        Graph: StaticGraph,
    {
        if self.len() < 2 {
            return None;
        }

        let mut walk = Vec::new();
        for node_pair in self.iter().take(self.len() - 1).zip(self.iter().skip(1)) {
            let from = *node_pair.0;
            let to = *node_pair.1;
            let mut edges_between = graph.edges_between(from, to);

            if let Some(edge) = edges_between.next() {
                walk.push(edge);
            } else {
                panic!("Not a valid node walk");
            }
            if edges_between.next().is_some() {
                return None;
            }
        }

        Some(ResultWalk::from(walk))
    }

    /// Returns true if this is a proper subwalk of the given walk.
    /// Proper means that the walks are not equal.
    fn is_proper_subwalk_of(&'a self, other: &Self) -> bool
    where
        Graph::NodeIndex: Eq,
    {
        self.is_proper_subsequence_of(other)
    }
}

/// A sequence of edges in a graph, where each consecutive pair of edges is connected by a node.
pub trait EdgeWalk<'a, Graph: GraphBase, EdgeSubwalk: EdgeWalk<'a, Graph, EdgeSubwalk> + ?Sized>:
    Sequence<'a, Graph::EdgeIndex, EdgeSubwalk>
where
    Graph::EdgeIndex: 'a,
{
    /// Computes the trivial heart of the walk, or returns `None` if the walk is non-trivial.
    /// The heart is returned as the index of the last split arc and the index of the first join arc of the walk.
    fn compute_trivial_heart(&'a self, graph: &Graph) -> Option<(usize, usize)>
    where
        Graph: StaticGraph,
    {
        let mut last_split = 0;
        let mut first_join = self.len() - 1;
        for (i, &edge) in self.iter().enumerate().take(self.len() - 1).skip(1) {
            if graph.is_split_edge(edge) {
                last_split = last_split.max(i);
            }
            if graph.is_join_edge(edge) {
                first_join = first_join.min(i);
            }
        }

        if last_split <= first_join
            && (last_split > 0 || first_join < self.len() - 1 || self.len() == 1)
        {
            Some((last_split, first_join))
        } else {
            None
        }
    }

    /// Compute the amount of edges in the trivial heart, or returns `None` if the walk is non-trivial.
    /// Recall that a heart is a walk from arc to arc.
    fn compute_trivial_heart_edge_len(&'a self, graph: &Graph) -> Option<usize>
    where
        Graph: StaticGraph,
    {
        if let Some((start, end)) = self.compute_trivial_heart(graph) {
            Some(end - start + 1)
        } else {
            None
        }
    }

    /// Returns true if this walk is non-trivial.
    fn is_non_trivial(&'a self, graph: &Graph) -> bool
    where
        Graph: StaticGraph,
    {
        self.compute_trivial_heart(graph).is_none()
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    fn compute_univocal_extension<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset(graph)
            .1
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    /// This variant handles not strongly connected graphs by forbidding L and R to repeat edges.
    fn compute_univocal_extension_non_scc<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset_non_scc(graph)
            .1
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Edge(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if &edge == self.first().unwrap() {
                        break;
                    } else {
                        result.push(edge)
                    }
                }
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Edge(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if &edge == self.last().unwrap() {
                        break;
                    } else {
                        result.push(edge)
                    }
                }
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    /// This variant handles not strongly connected graphs by forbidding L and R to repeat edges.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset_non_scc<
        ResultWalk: From<Vec<Graph::EdgeIndex>>,
    >(
        &'a self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Edge(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if edge == *self.last().unwrap() || result.contains(&edge) {
                        break;
                    } else {
                        result.push(edge);
                    }
                }
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Edge(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if edge == *self.first().unwrap()
                        || result[original_offset + self.len()..].contains(&edge)
                    {
                        break;
                    } else {
                        result.push(edge);
                    }
                }
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Returns the node walk represented by this edge walk.
    /// If this walk contains no edge, then None is returned.
    /// If there is a consecutive pair of edges not connected by a node, then this method panics.
    fn clone_as_node_walk<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &'a self,
        graph: &Graph,
    ) -> Option<ResultWalk>
    where
        Graph: StaticGraph,
    {
        if self.is_empty() {
            return None;
        }

        let mut walk = vec![
            graph
                .edge_endpoints(self.first().cloned().unwrap())
                .from_node,
        ];
        for edge_pair in self.iter().take(self.len() - 1).zip(self.iter().skip(1)) {
            let node = graph.edge_endpoints(*edge_pair.0).to_node;
            debug_assert_eq!(
                node,
                graph.edge_endpoints(*edge_pair.1).from_node,
                "Not a valid edge walk"
            );
            walk.push(node);
        }
        walk.push(graph.edge_endpoints(self.last().cloned().unwrap()).to_node);

        Some(ResultWalk::from(walk))
    }

    /// Returns true if this is a proper subwalk of the given walk.
    /// Proper means that the walks are not equal.
    fn is_proper_subwalk_of(&'a self, other: &Self) -> bool
    where
        Graph::EdgeIndex: Eq,
    {
        self.is_proper_subsequence_of(other)
    }

    /// Returns true if this is a valid circular walk in the given graph.
    fn is_circular_walk(&'a self, graph: &Graph) -> bool
    where
        Graph: StaticGraph,
    {
        if self.is_empty() {
            return true;
        }

        let mut connecting_node = graph.edge_endpoints(*self.last().unwrap()).to_node;
        for &edge in self.iter() {
            let edge_endpoints = graph.edge_endpoints(edge);
            if edge_endpoints.from_node != connecting_node {
                return false;
            } else {
                connecting_node = edge_endpoints.to_node;
            }
        }

        true
    }
}

////////////////////
////// Slices //////
////////////////////

impl<'a, Graph: GraphBase> NodeWalk<'a, Graph, [Graph::NodeIndex]> for [Graph::NodeIndex] where
    Graph::NodeIndex: 'a
{
}

impl<'a, Graph: GraphBase> EdgeWalk<'a, Graph, [Graph::EdgeIndex]> for [Graph::EdgeIndex] where
    Graph::EdgeIndex: 'a
{
}

/////////////////////////
////// VecNodeWalk //////
/////////////////////////

/// A node walk that is represented as a vector of node indices.
pub type VecNodeWalk<Graph> = Vec<<Graph as GraphBase>::NodeIndex>;

impl<'a, Graph: GraphBase> NodeWalk<'a, Graph, [Graph::NodeIndex]> for VecNodeWalk<Graph> where
    Graph::NodeIndex: 'a
{
}

/////////////////////////
////// VecEdgeWalk //////
/////////////////////////

/// An edge walk that is represented as a vector of edge indices.
pub type VecEdgeWalk<Graph> = Vec<<Graph as GraphBase>::EdgeIndex>;

impl<'a, Graph: GraphBase> EdgeWalk<'a, Graph, [Graph::EdgeIndex]> for VecEdgeWalk<Graph> where
    Graph::EdgeIndex: 'a
{
}