1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use tract_core::internal::*;
use tract_core::ndarray::prelude::*;

#[derive(Debug, Clone, new)]
pub struct SpaceToBatch {
    datum_type: DatumType,
}

impl Op for SpaceToBatch {
    fn name(&self) -> Cow<str> {
        "SpaceToBatch".into()
    }

    not_a_typed_op!();
}

impl StatelessOp for SpaceToBatch {
    fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let (input, block_shape, paddings) = args_3!(inputs);
        let block_shape = block_shape.cast_to::<i32>()?;
        let block_shape = block_shape.to_array_view::<i32>()?.into_dimensionality()?;
        let paddings = paddings.cast_to::<i32>()?;
        let paddings = paddings.to_array_view::<i32>()?.into_dimensionality()?;
        let r = dispatch_numbers!(super::space_to_batch(input.datum_type())(
            input,
            &block_shape.view(),
            &paddings.view()
        ))?;
        Ok(tvec!(r))
    }
}

impl InferenceRulesOp for SpaceToBatch {
    /// Registers the inference rules of the operator.
    fn rules<'r, 'p: 'r, 's: 'r>(
        &'s self,
        s: &mut Solver<'r>,
        inputs: &'p [TensorProxy],
        outputs: &'p [TensorProxy],
    ) -> InferenceResult {
        check_input_arity(&inputs, 3)?;
        check_output_arity(&outputs, 1)?;
        rules(s, self.datum_type, &outputs[0], &inputs[0], &inputs[1], &inputs[2])
    }

    inference_op_as_op!();

    fn to_typed(
        &self,
        _source: &InferenceModel,
        node: &InferenceNode,
        target: &mut TypedModel,
        mapping: &HashMap<OutletId, OutletId>,
    ) -> TractResult<TVec<OutletId>> {
        if let (Some(block_shape), Some(paddings)) = (
            target.outlet_fact(mapping[&node.inputs[1]])?.konst.clone(),
            target.outlet_fact(mapping[&node.inputs[2]])?.konst.clone(),
        ) {
            let paddings = paddings.cast_to::<TDim>()?;
            let paddings_view = paddings.to_array_view::<TDim>()?.into_dimensionality::<Ix2>()?;
            let mut paddings = tvec![];
            for p in paddings_view.outer_iter() {
                let pad = match (p[0].to_integer(), p[1].to_integer()) {
                    (Ok(bef), Ok(aft)) => {
                        super::unary::PaddingStrat::FixedFixed(bef as usize, aft as usize)
                    }
                    (_, Ok(aft)) => super::unary::PaddingStrat::FlexFixed(aft as usize),
                    (Ok(bef), _) => super::unary::PaddingStrat::FixedFlex(bef as usize),
                    _ => bail!("Failed to unarize SpaceToBatch because of padding"),
                };
                paddings.push(pad);
            }
            let op = super::unary::SpaceToBatchUnary::new(
                self.datum_type,
                target.outlet_fact(mapping[&node.inputs[0]])?.shape.to_tvec(),
                node.outputs[0]
                    .fact
                    .shape
                    .concretize()
                    .unwrap()
                    .iter()
                    .cloned()
                    .collect::<TVec<_>>(),
                block_shape.clone().into_tensor().into_array::<i32>()?.into_dimensionality()?,
                paddings,
            );
            target.wire_node(&*node.name, op, [mapping[&node.inputs[0]]].as_ref())
        } else {
            bail!("Need fixed block shape and padding")
        }
    }
}

#[derive(Debug, Clone, new)]
pub struct BatchToSpace {
    datum_type: DatumType,
}

impl Op for BatchToSpace {
    fn name(&self) -> Cow<str> {
        "BatchToSpace".into()
    }

    not_a_typed_op!();
}

impl StatelessOp for BatchToSpace {
    /// Evaluates the operation given the input tensors.
    fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let (input, block_shape, crops) = args_3!(inputs);
        let block_shape = block_shape.cast_to::<i32>()?;
        let block_shape = block_shape.to_array_view::<i32>()?.into_dimensionality()?;
        let crops = crops.cast_to::<i32>()?;
        let crops = crops.to_array_view::<i32>()?.into_dimensionality()?;
        let r = dispatch_numbers!(super::batch_to_space(input.datum_type())(
            input,
            &block_shape.view(),
            &crops.view()
        ))?;
        Ok(tvec!(r))
    }
}

impl InferenceRulesOp for BatchToSpace {
    /// Registers the inference rules of the operator.
    fn rules<'r, 'p: 'r, 's: 'r>(
        &'s self,
        s: &mut Solver<'r>,
        inputs: &'p [TensorProxy],
        outputs: &'p [TensorProxy],
    ) -> InferenceResult {
        check_input_arity(&inputs, 3)?;
        check_output_arity(&outputs, 1)?;
        rules(s, self.datum_type, &inputs[0], &outputs[0], &inputs[1], &inputs[2])
    }

    fn to_typed(
        &self,
        _source: &InferenceModel,
        node: &InferenceNode,
        target: &mut TypedModel,
        mapping: &HashMap<OutletId, OutletId>,
    ) -> TractResult<TVec<OutletId>> {
        if let (Some(block_shape), Some(paddings)) = (
            target.outlet_fact(mapping[&node.inputs[1]])?.konst.clone(),
            target.outlet_fact(mapping[&node.inputs[2]])?.konst.clone(),
        ) {
            let paddings = paddings.cast_to::<TDim>()?;
            let paddings = paddings.to_array_view::<TDim>()?.into_dimensionality::<Ix2>()?;
            let paddings = paddings
                .outer_iter()
                .map(|p| {
                    Ok(match (p[0].to_integer(), p[1].to_integer()) {
                        (Ok(bef), Ok(aft)) => {
                            super::unary::PaddingStrat::FixedFixed(bef as usize, aft as usize)
                        }
                        (_, Ok(aft)) => super::unary::PaddingStrat::FlexFixed(aft as usize),
                        (Ok(bef), _) => super::unary::PaddingStrat::FixedFlex(bef as usize),
                        _ => bail!("Failed to unarize SpaceToBatch because of padding"),
                    })
                })
                .collect::<TractResult<_>>()?;
            let op = super::unary::BatchToSpaceUnary::new(
                self.datum_type,
                target.outlet_fact(mapping[&node.inputs[0]])?.shape.to_tvec(),
                node.outputs[0]
                    .fact
                    .shape
                    .concretize()
                    .unwrap()
                    .iter()
                    .cloned()
                    .collect::<TVec<_>>(),
                block_shape.clone().into_tensor().into_array::<i32>()?.into_dimensionality()?,
                paddings,
            );
            target.wire_node(&*node.name, op, [mapping[&node.inputs[0]]].as_ref())
        } else {
            bail!("Need fixed block shape and padding")
        }
    }
    inference_op_as_op!();
}

fn rules<'r, 'p: 'r>(
    s: &mut Solver<'r>,
    datum_type: DatumType,
    batch: &'p TensorProxy,
    space: &'p TensorProxy,
    block_shape: &'p TensorProxy,
    paddings: &'p TensorProxy,
) -> InferenceResult {
    s.equals(&batch.datum_type, datum_type)?;
    s.equals(&batch.datum_type, &space.datum_type)?;
    s.equals(&block_shape.datum_type, DatumType::I32)?;
    s.equals(&batch.rank, &space.rank)?;
    s.equals(&block_shape.rank, 1)?;
    s.equals(&paddings.rank, 2)?;
    s.equals(&block_shape.shape[0], &paddings.shape[0])?;
    s.given(&block_shape.value, move |s, block_shape| {
        let block_shape = block_shape.into_tensor().into_array::<i32>()?;
        let block_shape_prod = block_shape.iter().map(|s| *s as usize).product::<usize>();
        s.equals(&batch.shape[0], (block_shape_prod as i32) * space.shape[0].bex())?;
        s.given(&paddings.value, move |s, paddings| {
            let paddings = paddings.cast_to::<TDim>()?;
            let paddings = paddings.to_array_view::<TDim>()?.into_dimensionality()?;
            for d in 0..block_shape.len() {
                s.equals(
                    space.shape[1 + d].bex() + &paddings[(d, 0)] + &paddings[(d, 1)],
                    (block_shape[d] as i32) * batch.shape[1 + d].bex(),
                )?;
            }
            Ok(())
        })
    })?;
    s.given(&block_shape.value, move |s, block_shape| {
        let block_shape = block_shape.into_tensor().into_array::<i32>()?;
        s.given(&space.rank, move |s, rank: i32| {
            for d in block_shape.len() + 1..(rank as usize) {
                s.equals(&space.shape[d], &batch.shape[d])?
            }
            Ok(())
        })
    })
}