1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! Storage for span data shared by multiple [`Layer`]s.
//!
//! ## Using the Span Registry
//!
//! This module provides the [`Registry`] type, a [`Subscriber`] implementation
//! which tracks per-span data and exposes it to [`Layer`]s. When a `Registry`
//! is used as the base `Subscriber` of a `Layer` stack, the
//! [`layer::Context`][ctx] type will  provide methods allowing `Layer`s to
//! [look up span data][lookup] stored in the registry. While [`Registry`] is a
//! reasonable default for storing spans and events, other stores that implement
//! [`LookupSpan`] and [`Subscriber`] themselves (with [`SpanData`] implemented
//! by the per-span data they store) can be used as a drop-in replacement.
//!
//! For example, we might create a `Registry` and add multiple `Layer`s like so:
//! ```rust
//! use tracing_subscriber::{registry::Registry, Layer, prelude::*};
//! # use tracing_core::Subscriber;
//! # pub struct FooLayer {}
//! # pub struct BarLayer {}
//! # impl<S: Subscriber> Layer<S> for FooLayer {}
//! # impl<S: Subscriber> Layer<S> for BarLayer {}
//! # impl FooLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl BarLayer {
//! # fn new() -> Self { Self {} }
//! # }
//!
//! let subscriber = Registry::default()
//!     .with(FooLayer::new())
//!     .with(BarLayer::new());
//! ```
//!
//! If a type implementing `Layer` depends on the functionality of a `Registry`
//! implementation, it should bound its `Subscriber` type parameter with the
//! [`LookupSpan`] trait, like so:
//!
//! ```rust
//! use tracing_subscriber::{registry, Layer};
//! use tracing_core::Subscriber;
//!
//! pub struct MyLayer {
//!     // ...
//! }
//!
//! impl<S> Layer<S> for MyLayer
//! where
//!     S: Subscriber + for<'a> registry::LookupSpan<'a>,
//! {
//!     // ...
//! }
//! ```
//! When this bound is added, the `Layer` implementation will be guaranteed
//! access to the [`Context`][ctx] methods, such as [`Context::span`][lookup], that
//! require the root subscriber to be a registry.
//!
//! [`Layer`]: ../layer/trait.Layer.html
//! [`Subscriber`]:
//!     https://docs.rs/tracing-core/latest/tracing_core/subscriber/trait.Subscriber.html
//! [`Registry`]: struct.Registry.html
//! [ctx]: ../layer/struct.Context.html
//! [lookup]: ../layer/struct.Context.html#method.span
//! [`LookupSpan`]: trait.LookupSpan.html
//! [`SpanData`]: trait.SpanData.html
use tracing_core::{field::FieldSet, span::Id, Metadata};

/// A module containing a type map of span extensions.
mod extensions;
#[cfg(feature = "registry")]
mod sharded;
#[cfg(feature = "registry")]
mod stack;

pub use extensions::{Extensions, ExtensionsMut};
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Data;
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Registry;

/// Provides access to stored span data.
///
/// Subscribers which store span data and associate it with span IDs should
/// implement this trait; if they do, any [`Layer`]s wrapping them can look up
/// metadata via the [`Context`] type's [`span()`] method.
///
/// [`Layer`]: ../layer/trait.Layer.html
/// [`Context`]: ../layer/struct.Context.html
/// [`span()`]: ../layer/struct.Context.html#method.metadata
pub trait LookupSpan<'a> {
    /// The type of span data stored in this registry.
    type Data: SpanData<'a>;

    /// Returns the [`SpanData`] for a given `Id`, if it exists.
    ///
    /// **Note**: users of the `LookupSpan` trait should typically call the
    /// [`span`] method rather than this method. The `span` method is
    /// implemented by calling `span_data`, but returns a reference which is
    /// capable of performing more sophisiticated queries.
    ///
    /// [`SpanData`]: trait.SpanData.html
    /// [`span`]: #method.span
    fn span_data(&'a self, id: &Id) -> Option<Self::Data>;

    /// Returns a [`SpanRef`] for the span with the given `Id`, if it exists.
    ///
    /// A `SpanRef` is similar to [`SpanData`], but it allows performing
    /// additional lookups against the registryr that stores the wrapped data.
    ///
    /// In general, _users_ of the `LookupSpan` trait should use this method
    /// rather than the [`span_data`] method; while _implementors_ of this trait
    /// should only implement `span_data`.
    ///
    /// [`SpanRef`]: struct.SpanRef.html
    /// [`SpanData`]: trait.SpanData.html
    /// [`span_data`]: #method.span_data
    fn span(&'a self, id: &Id) -> Option<SpanRef<'_, Self>>
    where
        Self: Sized,
    {
        let data = self.span_data(&id)?;
        Some(SpanRef {
            registry: self,
            data,
        })
    }
}

/// A stored representation of data associated with a span.
pub trait SpanData<'a> {
    /// Returns this span's ID.
    fn id(&self) -> Id;

    /// Returns a reference to the span's `Metadata`.
    fn metadata(&self) -> &'static Metadata<'static>;

    /// Returns a reference to the ID
    fn parent(&self) -> Option<&Id>;

    /// Returns a reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    fn extensions(&self) -> Extensions<'_>;

    /// Returns a mutable reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    fn extensions_mut(&self) -> ExtensionsMut<'_>;
}

/// A reference to [span data] and the associated [registry].
///
/// This type implements all the same methods as [`SpanData`][span data], and
/// provides additional methods for querying the registry based on values from
/// the span.
///
/// [span data]: trait.SpanData.html
/// [registry]: trait.LookupSpan.html
#[derive(Debug)]
pub struct SpanRef<'a, R: LookupSpan<'a>> {
    registry: &'a R,
    data: R::Data,
}

/// An iterator over the parents of a span.
///
/// This is returned by the [`SpanRef::parents`] method.
///
/// [`SpanRef::parents`]: struct.SpanRef.html#method.parents
#[derive(Debug)]
pub struct Parents<'a, R> {
    registry: &'a R,
    next: Option<Id>,
}

/// An iterator over a span's parents, starting with the root of the trace
/// tree.
///
/// For additonal details, see [`SpanRef::from_root`].
///
/// [`Span::from_root`]: struct.SpanRef.html#method.from_root
pub struct FromRoot<'a, R: LookupSpan<'a>> {
    #[cfg(feature = "smallvec")]
    inner: std::iter::Rev<smallvec::IntoIter<SpanRefVecArray<'a, R>>>,
    #[cfg(not(feature = "smallvec"))]
    inner: std::iter::Rev<std::vec::IntoIter<SpanRef<'a, R>>>,
}

#[cfg(feature = "smallvec")]
type SpanRefVecArray<'span, L> = [SpanRef<'span, L>; 16];

impl<'a, R> SpanRef<'a, R>
where
    R: LookupSpan<'a>,
{
    /// Returns this span's ID.
    pub fn id(&self) -> Id {
        self.data.id()
    }

    /// Returns a static reference to the span's metadata.
    pub fn metadata(&self) -> &'static Metadata<'static> {
        self.data.metadata()
    }

    /// Returns the span's name,
    pub fn name(&self) -> &'static str {
        self.data.metadata().name()
    }

    /// Returns a list of [fields] defined by the span.
    ///
    /// [fields]: https://docs.rs/tracing-core/latest/tracing_core/field/index.html
    pub fn fields(&self) -> &FieldSet {
        self.data.metadata().fields()
    }

    /// Returns the ID of this span's parent, or `None` if this span is the root
    /// of its trace tree.
    pub fn parent_id(&self) -> Option<&Id> {
        self.data.parent()
    }

    /// Returns a `SpanRef` describing this span's parent, or `None` if this
    /// span is the root of its trace tree.
    pub fn parent(&self) -> Option<Self> {
        let id = self.data.parent()?;
        let data = self.registry.span_data(id)?;
        Some(Self {
            registry: self.registry,
            data,
        })
    }

    /// Returns an iterator over all parents of this span, starting with the
    /// immediate parent.
    ///
    /// The iterator will first return the span's immediate parent, followed by
    /// that span's parent, followed by _that_ span's parent, and so on, until a
    /// it reaches a root span.
    pub fn parents(&self) -> Parents<'a, R> {
        Parents {
            registry: self.registry,
            next: self.parent().map(|parent| parent.id()),
        }
    }

    /// Returns an iterator over all parents of this span, starting with the
    /// root of the trace tree.
    ///
    /// The iterator will return the root of the trace tree, followed by the
    /// next span, and then the next, until this span's immediate parent is
    /// returned.
    ///
    /// **Note**: if the "smallvec" feature flag is not enabled, this may
    /// allocate.
    pub fn from_root(&self) -> FromRoot<'a, R> {
        #[cfg(feature = "smallvec")]
        type SpanRefVec<'span, L> = smallvec::SmallVec<SpanRefVecArray<'span, L>>;
        #[cfg(not(feature = "smallvec"))]
        type SpanRefVec<'span, L> = Vec<SpanRef<'span, L>>;

        // an alternative way to handle this would be to the recursive approach that
        // `fmt` uses that _does not_ entail any allocation in this fmt'ing
        // spans path.
        let parents = self.parents().collect::<SpanRefVec<'a, _>>();
        let inner = parents.into_iter().rev();
        FromRoot { inner }
    }

    /// Returns a reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    pub fn extensions(&self) -> Extensions<'_> {
        self.data.extensions()
    }

    /// Returns a mutable reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    pub fn extensions_mut(&self) -> ExtensionsMut<'_> {
        self.data.extensions_mut()
    }
}

impl<'a, R> Iterator for Parents<'a, R>
where
    R: LookupSpan<'a>,
{
    type Item = SpanRef<'a, R>;
    fn next(&mut self) -> Option<Self::Item> {
        let id = self.next.take()?;
        let span = self.registry.span(&id)?;
        self.next = span.parent().map(|parent| parent.id());
        Some(span)
    }
}

// === impl FromRoot ===

impl<'span, R> Iterator for FromRoot<'span, R>
where
    R: LookupSpan<'span>,
{
    type Item = SpanRef<'span, R>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'span, R> std::fmt::Debug for FromRoot<'span, R>
where
    R: LookupSpan<'span>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad("FromRoot { .. }")
    }
}