1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! This module provides functionality to aid managing routing requests between [`Service`]s.
//!
//! # Example
//!
//! [`Steer`] can for example be used to create a router, akin to what you might find in web
//! frameworks.
//!
//! Here, `GET /` will be sent to the `root` service, while all other requests go to `not_found`.
//!
//! ```rust
//! # use std::task::{Context, Poll};
//! # use tower_service::Service;
//! # use futures_util::future::{ready, Ready, poll_fn};
//! # use tower::steer::Steer;
//! # use tower::service_fn;
//! # use tower::util::BoxService;
//! # use tower::ServiceExt;
//! # use std::convert::Infallible;
//! use http::{Request, Response, StatusCode, Method};
//!
//! # #[tokio::main]
//! # async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Service that responds to `GET /`
//! let root = service_fn(|req: Request<String>| async move {
//!     # assert_eq!(req.uri().path(), "/");
//!     let res = Response::new("Hello, World!".to_string());
//!     Ok::<_, Infallible>(res)
//! });
//! // We have to box the service so its type gets erased and we can put it in a `Vec` with other
//! // services
//! let root = BoxService::new(root);
//!
//! // Service that responds with `404 Not Found` to all requests
//! let not_found = service_fn(|req: Request<String>| async move {
//!     let res = Response::builder()
//!         .status(StatusCode::NOT_FOUND)
//!         .body(String::new())
//!         .expect("response is valid");
//!     Ok::<_, Infallible>(res)
//! });
//! // Box that as well
//! let not_found = BoxService::new(not_found);
//!
//! let mut svc = Steer::new(
//!     // All services we route between
//!     vec![root, not_found],
//!     // How we pick which service to send the request to
//!     |req: &Request<String>, _services: &[_]| {
//!         if req.method() == Method::GET && req.uri().path() == "/" {
//!             0 // Index of `root`
//!         } else {
//!             1 // Index of `not_found`
//!         }
//!     },
//! );
//!
//! // This request will get sent to `root`
//! let req = Request::get("/").body(String::new()).unwrap();
//! let res = svc.ready().await?.call(req).await?;
//! assert_eq!(res.into_body(), "Hello, World!");
//!
//! // This request will get sent to `not_found`
//! let req = Request::get("/does/not/exist").body(String::new()).unwrap();
//! let res = svc.ready().await?.call(req).await?;
//! assert_eq!(res.status(), StatusCode::NOT_FOUND);
//! assert_eq!(res.into_body(), "");
//! #
//! # Ok(())
//! # }
//! ```
use std::task::{Context, Poll};
use std::{collections::VecDeque, marker::PhantomData};
use tower_service::Service;

/// This is how callers of [`Steer`] tell it which `Service` a `Req` corresponds to.
pub trait Picker<S, Req> {
    /// Return an index into the iterator of `Service` passed to [`Steer::new`].
    fn pick(&mut self, r: &Req, services: &[S]) -> usize;
}

impl<S, F, Req> Picker<S, Req> for F
where
    F: Fn(&Req, &[S]) -> usize,
{
    fn pick(&mut self, r: &Req, services: &[S]) -> usize {
        self(r, services)
    }
}

/// [`Steer`] manages a list of [`Service`]s which all handle the same type of request.
///
/// An example use case is a sharded service.
/// It accepts new requests, then:
/// 1. Determines, via the provided [`Picker`], which [`Service`] the request coresponds to.
/// 2. Waits (in [`Service::poll_ready`]) for *all* services to be ready.
/// 3. Calls the correct [`Service`] with the request, and returns a future corresponding to the
///    call.
///
/// Note that [`Steer`] must wait for all services to be ready since it can't know ahead of time
/// which [`Service`] the next message will arrive for, and is unwilling to buffer items
/// indefinitely. This will cause head-of-line blocking unless paired with a [`Service`] that does
/// buffer items indefinitely, and thus always returns [`Poll::Ready`]. For example, wrapping each
/// component service with a [`Buffer`] with a high enough limit (the maximum number of concurrent
/// requests) will prevent head-of-line blocking in [`Steer`].
///
/// [`Buffer`]: crate::buffer::Buffer
#[derive(Debug)]
pub struct Steer<S, F, Req> {
    router: F,
    services: Vec<S>,
    not_ready: VecDeque<usize>,
    _phantom: PhantomData<Req>,
}

impl<S, F, Req> Steer<S, F, Req> {
    /// Make a new [`Steer`] with a list of [`Service`]'s and a [`Picker`].
    ///
    /// Note: the order of the [`Service`]'s is significant for [`Picker::pick`]'s return value.
    pub fn new(services: impl IntoIterator<Item = S>, router: F) -> Self {
        let services: Vec<_> = services.into_iter().collect();
        let not_ready: VecDeque<_> = services.iter().enumerate().map(|(i, _)| i).collect();
        Self {
            router,
            services,
            not_ready,
            _phantom: PhantomData,
        }
    }
}

impl<S, Req, F> Service<Req> for Steer<S, F, Req>
where
    S: Service<Req>,
    F: Picker<S, Req>,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        loop {
            // must wait for *all* services to be ready.
            // this will cause head-of-line blocking unless the underlying services are always ready.
            if self.not_ready.is_empty() {
                return Poll::Ready(Ok(()));
            } else {
                if let Poll::Pending = self.services[self.not_ready[0]].poll_ready(cx)? {
                    return Poll::Pending;
                }

                self.not_ready.pop_front();
            }
        }
    }

    fn call(&mut self, req: Req) -> Self::Future {
        assert!(
            self.not_ready.is_empty(),
            "Steer must wait for all services to be ready. Did you forget to call poll_ready()?"
        );

        let idx = self.router.pick(&req, &self.services[..]);
        let cl = &mut self.services[idx];
        self.not_ready.push_back(idx);
        cl.call(req)
    }
}

impl<S, F, Req> Clone for Steer<S, F, Req>
where
    S: Clone,
    F: Clone,
{
    fn clone(&self) -> Self {
        Self {
            router: self.router.clone(),
            services: self.services.clone(),
            not_ready: self.not_ready.clone(),
            _phantom: PhantomData,
        }
    }
}