1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#![deny(missing_docs, intra_doc_link_resolution_failure)]

//! Topological functions execute within a context unique to the path in the runtime call
//! graph of other topological functions preceding the current activation record.
//!
//! Defining a topological function results in a macro definition for binding the topological
//! function to each callsite where it is invoked.
//!
//! Define a topological function with the `topo::bound` attribute:
//!
//! ```
//! #[topo::bound]
//! fn basic_topo() -> topo::Id { topo::Id::current() }
//!
//! #[topo::bound]
//! fn tier_two() -> topo::Id { basic_topo!() }
//!
//! // each of these functions will be run in separately identified
//! // contexts as the source locations for their calls are different
//! let first = basic_topo!();
//! let second = basic_topo!();
//! assert_ne!(first, second);
//!
//! let third = tier_two!();
//! let fourth = tier_two!();
//! assert_ne!(third, fourth);
//! assert_ne!(first, third);
//! assert_ne!(first, fourth);
//! assert_ne!(second, fourth);
//! ```
//!
//! Because topological functions must be sensitive to the location at which they're invoked and
//! bound to their parent, we transform the function definition into a macro so we can link
//! the two activation records inside macro expansion. See the docs for the attribute for more
//! detail and further discussion of the tradeoffs.
//!
//! TODO include diagram of topology
//!
//! TODO discuss creation of tree from "abstract stack frames" represented by topological
//! invocations
//!
//! TODO discuss propagating environment values down the topological call tree
//!
//! TODO show example of a rendering loop
//!

pub use topo_macro::bound;

use {
    owning_ref::OwningRef,
    std::{
        any::{Any, TypeId},
        cell::RefCell,
        collections::{hash_map::DefaultHasher, HashMap as Map},
        hash::{Hash, Hasher},
        mem::replace,
        ops::Deref,
        rc::Rc,
    },
};

/// Calls the provided expression within an [`Env`] bound to the callsite, optionally passing
/// an environment to the child scope.
///
/// ```
/// let prev = topo::Id::current();
/// topo::call!(assert_ne!(prev, topo::Id::current()));
/// ```
///
/// Adding an `env! { ... }` directive to the macro input will take ownership of provided values
/// and make them available to the code run in the `Point` created by the invocation.
///
/// ```
/// # use topo;
/// #[derive(Debug, Eq, PartialEq)]
/// struct Submarine(usize);
///
/// assert!(topo::Env::get::<Submarine>().is_none());
///
/// topo::call!({
///     assert_eq!(&Submarine(1), &*topo::Env::get::<Submarine>().unwrap());
///
///     topo::call!({
///         assert_eq!(&Submarine(2), &*topo::Env::get::<Submarine>().unwrap());
///     }, env! {
///         Submarine => Submarine(2),
///     });
///
///     assert_eq!(&Submarine(1), &*topo::Env::get::<Submarine>().unwrap());
/// }, env! {
///     Submarine => Submarine(1),
/// });
///
/// assert!(topo::Env::get::<Submarine>().is_none());
/// ```
#[macro_export]
macro_rules! call {
    ($($input:tt)*) => {{
        $crate::unstable_raw_call!(is_root: false, call: $($input)*)
    }}
}

/// Roots a topology at a particular callsite while calling the provided expression with the same
/// convention as [`call`].
///
/// Normally, when a topological function is repeatedly bound to the same callsite in a loop,
/// each invocation receives a different [`Id`], as these invocations model siblings in the
/// topology. The overall goal of this crate, however, is to provide imperative codepaths with
/// stable identifiers *across* executions at the same callsite. In practice, we must have a root
/// to the subtopology we are maintaining across these impure calls, and after each execution of the
/// subtopology it must reset the state at its [`Id`] so that the next execution of the root
/// is bound to the same point at its parent as its previous execution was. This is...an opaque
/// explanation at best and TODO revise it.
///
/// In this first example, a scope containing the loop can observe each separate loop
/// iteration mutating `count` and the root closure mutating `exit`. The variables `root_ids` and
/// `child_ids` observe the identifiers of the
///
/// ```
/// # use topo::{self, *};
/// # use std::collections::{HashMap, HashSet};
/// struct LoopCount(usize);
///
/// let mut count = 0;
/// let mut exit = false;
/// let mut root_ids = HashSet::new();
/// let mut child_ids = HashMap::new();
/// while !exit {
///     count += 1;
///     topo::root!({
///         root_ids.insert(topo::Id::current());
///         assert_eq!(
///             root_ids.len(),
///             1,
///             "the Id of this scope should be repeated, not incremented"
///         );
///
///         let outer_count = topo::Env::get::<LoopCount>().unwrap().0;
///         assert!(outer_count <= 10);
///         if outer_count == 10 {
///             exit = true;
///         }
///
///         for i in 0..10 {
///             topo::call!({
///                 let current_id = topo::Id::current();
///                 if outer_count > 1 {
///                     assert_eq!(child_ids[&i], current_id);
///                 }
///                 child_ids.insert(i, current_id);
///                 assert!(
///                     child_ids.len() <= 10,
///                     "only 10 children should be observed across all loop iterations",
///                 );
///             });
///         }
///         assert_eq!(child_ids.len(), 10);
///     }, env! {
///          LoopCount => LoopCount(count),
///     });
///     assert_eq!(child_ids.len(), 10);
///     assert_eq!(root_ids.len(), 1);
/// }
/// ```
#[macro_export]
macro_rules! root {
    ($($input:tt)*) => {{
        $crate::unstable_raw_call!(is_root: true, call: $($input)*)
    }}
}

#[doc(hidden)]
#[macro_export]
macro_rules! unstable_raw_call {
    (is_root: $is_root:expr, call: $inner:expr $(, env! { $($env:tt)* })?) => {{
        struct UwuDaddyRustcGibUniqueTypeIdPlsPls; // thanks for the great name idea, cjm00!

        #[allow(unused_mut)]
        let mut _new_env = Default::default();
        $( _new_env = $crate::env! { $($env)* };  )?

        let _reset_to_parent_on_drop_pls = $crate::Point::unstable_pin_prev_enter_child(
                std::any::TypeId::of::<UwuDaddyRustcGibUniqueTypeIdPlsPls>(),
                _new_env,
                $is_root
        );

        $inner
    }};
}

/// Identifies an activation record in the call topology. This is implemented approximately similar
/// to the [hash cons][cons] of preceding topological function invocations' `Id`s.
///
/// TODO explore analogies to instruction and stack pointers?
/// TODO explore more efficient implementations by piggybacking on those?
///
/// [cons]: https://en.wikipedia.org/wiki/Hash_consing
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Id(u64);

impl Id {
    /// Returns the `Id` for the current scope in the call topology.
    pub fn current() -> Self {
        fn assert_send_and_sync<T>()
        where
            T: Send + Sync,
        {
        }
        assert_send_and_sync::<Id>();
        CURRENT_POINT.with(|p| p.borrow().id)
    }
}

impl std::fmt::Debug for Id {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.write_fmt(format_args!("{:x?}", self.0))
    }
}

/// The root of a sub-graph within the overall topology formed at runtime by the call-graph of
/// topological functions.
///
/// The current `Point` contains the local [`Env`], [`Id`], and some additional internal state to
/// uniquely identify each child topological function invocations.
#[derive(Debug)]
pub struct Point {
    id: Id,
    state: State,
}

thread_local! {
    /// The `Point` representing the current dynamic scope.
    static CURRENT_POINT: RefCell<Point> = Default::default();
}

impl Point {
    /// "Root" a new child [`Point`]. When the guard returned from this function is dropped, the
    /// parent point is restored as the "current" `Point`. By calling provided code while the
    /// returned guard is live on the stack, we create the tree of indices and environments that
    /// correspond to the topological call tree, exiting the child context when the rooted scope
    /// ends.
    #[doc(hidden)]
    pub fn unstable_pin_prev_enter_child(
        callsite_ty: TypeId,
        add_env: EnvInner,
        reset_on_drop: bool,
    ) -> impl Drop {
        CURRENT_POINT.with(|parent| {
            let mut parent = parent.borrow_mut();

            // this must be copied *before* creating the child below, which will mutate the state
            let parent_initial_state = parent.state.clone();

            let child = if reset_on_drop {
                let mut root = Point::default();
                root.state = root.state.child(Callsite::new(callsite_ty, &None), add_env);
                root
            } else {
                parent.child(callsite_ty, add_env)
            };
            let parent = replace(&mut *parent, child);

            scopeguard::guard(
                (parent_initial_state, parent),
                move |(prev_initial_state, mut prev)| {
                    if reset_on_drop {
                        prev.state = prev_initial_state;
                    }
                    CURRENT_POINT.with(|p| p.replace(prev));
                },
            )
        })
    }

    /// Mark a child Point in the topology.
    fn child(&mut self, callsite_ty: TypeId, additional: EnvInner) -> Self {
        let callsite = Callsite::new(callsite_ty, &self.state.last_child);

        let mut hasher = DefaultHasher::new();
        self.id.hash(&mut hasher);
        self.state.child_count.hash(&mut hasher);
        callsite.hash(&mut hasher);
        let id = Id(hasher.finish());

        Self {
            id,
            state: self.state.child(callsite, additional),
        }
    }

    /// Runs the provided closure with access to the current [`Point`].
    fn with_current<Out>(op: impl FnOnce(&Point) -> Out) -> Out {
        CURRENT_POINT.with(|p| op(&*p.borrow()))
    }
}

impl Default for Point {
    fn default() -> Self {
        Self {
            id: Id(0),
            state: Default::default(),
        }
    }
}

impl PartialEq for Point {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

#[derive(Clone, Debug, Default)]
struct State {
    /// The callsite most recently bound to this one as a child.
    last_child: Option<Callsite>,
    /// The number of children currently bound to this `Point`.
    child_count: u16,
    /// The current environment.
    env: Env,
}

impl State {
    fn child(&mut self, callsite: Callsite, additional: EnvInner) -> Self {
        self.last_child = Some(callsite);
        self.child_count += 1;

        Self {
            last_child: None,
            child_count: 0,
            env: self.env.child(additional),
        }
    }
}

#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
struct Callsite {
    ty: TypeId,
    count: usize,
}

impl Callsite {
    fn new(ty: TypeId, last_child: &Option<Callsite>) -> Self {
        let prev_count = match last_child {
            Some(ref prev) if prev.ty == ty => prev.count,
            _ => 0,
        };

        Self {
            ty,
            count: prev_count + 1,
        }
    }
}

/// Immutable environment container for the current (sub)topology. Environment values can be
/// provided by parent topological invocations (currently just with [`call`] and
/// [`root`]), but child functions can only mutate their environment through interior
/// mutability.
///
/// The environment is type-indexed/type-directed, and each `Env` holds 0-1 instances
/// of every [`std::any::Any`]` + 'static` type. Access is provided through read-only references.
///
/// Aside: one interesting implication of the above is the ability to define "private scoped global
/// values" which are private to functions which are nonetheless propagating the values with
/// their control flow. This can be useful for runtimes to offer themselves execution-local values
/// in functions which are invoked by external code. It can also be severely abused, like any
/// implicit state, and should be used with caution.
#[derive(Clone, Debug, Default)]
pub struct Env {
    inner: Rc<EnvInner>,
}

type EnvInner = Map<TypeId, Rc<dyn Any>>;

impl Env {
    /// Returns a reference to a value in the current environment if it has been added to the
    /// environment by parent/enclosing [`call`] invocations.
    pub fn get<E>() -> Option<impl Deref<Target = E> + 'static>
    where
        E: Any + 'static,
    {
        Point::with_current(|current| {
            current
                .state
                .env
                .inner
                .get(&TypeId::of::<E>())
                .map(|guard| {
                    OwningRef::new(guard.to_owned()).map(|anon| anon.downcast_ref().unwrap())
                })
        })
    }

    /// Returns a reference to a value in the current environment, as [`Env::get`] does, but panics
    /// if the value has not been set in the environment.
    // TODO typename for debugging here would be v. nice
    pub fn expect<E>() -> impl Deref<Target = E> + 'static
    where
        E: Any + 'static,
    {
        Self::get().expect("expected a value from the environment, found none")
    }

    fn child(&self, additional: EnvInner) -> Env {
        let mut new: EnvInner = (*self.inner).to_owned();

        new.extend(additional.iter().map(|(t, v)| (*t, v.clone())));

        Env {
            inner: Rc::new(new),
        }
    }
}

/// Defines a new macro (named after the first metavariable) which calls a function (named in
/// the second metavariable) in a `Point` specific to this callsite and its parents.
///
/// As a quirk of the `macro_rules!` parser, we have to "bring our own" metavariables for the new
/// macro's args and their expansion for the wrapped function. This makes for an awkward invocation,
/// but it's only invoked from the proc macro attribute for generating topological macros.
///
/// This is used to work around procedural macro hygiene restrictions, allowing us to "generate" a
/// macro from a procedural macro without needing to enable a (as of writing) unstable feature.
#[doc(hidden)]
#[macro_export]
macro_rules! unstable_make_topo_macro {
    (
        $name:ident $mangled_name:ident
        match $matcher:tt
        subst $pass:tt
        doc ($($docs:tt)*)
    ) => {
        $($docs)*
        #[macro_export]
        macro_rules! $name {
            $matcher => {
                topo::unstable_raw_call!(is_root: false, call: $mangled_name $pass)
            };
        }
    };
}

/// Declare additional environment values to expose to a child topological function's call tree.
#[macro_export]
macro_rules! env {
    ($($env_item_ty:ty => $env_item:expr,)*) => {{
        use std::collections::HashMap;

        #[allow(unused_mut)]
        let mut new_env = HashMap::new();
        $({
            use std::{
                any::{Any, TypeId},
                rc::Rc,
            };
            new_env.insert(
                TypeId::of::<$env_item_ty>(),
                Rc::new($env_item) as Rc<dyn Any>,
            );
        })*
        new_env
    }}
}

#[cfg(test)]
mod tests {
    use super::{Env, Id};

    #[test]
    fn one_child_in_a_loop() {
        let root = Id::current();
        assert_eq!(root, Id::current());

        let mut prev = root;

        for _ in 0..100 {
            let called;
            call!({
                let current = Id::current();
                assert_ne!(prev, current, "each Id in this loop should be unique");
                prev = current;
                called = true;
            });

            // make sure we've returned to an expected baseline
            assert_eq!(root, Id::current());
            assert!(called);
        }
    }

    #[test]
    fn call_env() {
        let first_called;
        let second_called;
        let (first_byte, second_byte) = (0u8, 1u8);

        call!(
            {
                let curr_byte: u8 = *Env::get::<u8>().unwrap();
                assert_eq!(curr_byte, first_byte);
                first_called = true;

                call!(
                    {
                        let curr_byte: u8 = *Env::get::<u8>().unwrap();
                        assert_eq!(curr_byte, second_byte);
                        second_called = true;
                    },
                    env! {
                        u8 => second_byte,
                    }
                );

                assert!(second_called);
                assert_eq!(curr_byte, first_byte);
            },
            env! {
                u8 => first_byte,
            }
        );
        assert!(first_called);
        assert!(Env::get::<u8>().is_none());
    }
}