1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
//! A Max-Flow computation implementing Cherkassky's variant of Dinitz' seminal
//! algorithm. The implementation at hand is distinguished by three factors:
//! 1) Computing the layer graph in a single BFS starting in t.
//! 2) Omitting maintenance of the layer graph.
//! 3) Running the augmentation phase as a single DFS.
//!
//! The DFS restarts after it found an augmenting path on the tail of the
//! saturated edge that is closest to the source.
use crate::{
    edge::{Edge, InputEdge},
    graph::{Graph, NodeID},
    max_flow::{MaxFlow, ResidualCapacity},
    static_graph::StaticGraph,
};
use bitvec::vec::BitVec;
use log::{debug, info};
use core::cmp::min;
use std::{collections::VecDeque, time::Instant};

pub struct Dinic {
    residual_graph: StaticGraph<ResidualCapacity>,
    max_flow: i32,
    finished: bool,
    level: Vec<usize>,
    parents: Vec<NodeID>,
    stack: Vec<(NodeID, i32)>,
    dfs_count: usize,
    bfs_count: usize,
    queue: VecDeque<NodeID>,
    source: NodeID,
    target: NodeID,
}

impl Dinic {
    // todo(dl): add closure parameter to derive edge data
    pub fn from_generic_edge_list(
        input_edges: Vec<impl Edge<ID = NodeID>>,
        source: NodeID,
        target: NodeID,
    ) -> Self {
        let edge_list: Vec<InputEdge<ResidualCapacity>> = input_edges
            .into_iter()
            .map(|edge| InputEdge {
                source: edge.source(),
                target: edge.target(),
                data: ResidualCapacity::new(1),
            })
            .collect();

        debug!("created {} ff edges", edge_list.len());
        Dinic::from_edge_list(edge_list, source, target)
    }

    pub fn from_edge_list(
        mut edge_list: Vec<InputEdge<ResidualCapacity>>,
        source: usize,
        target: usize,
    ) -> Self {
        let number_of_edges = edge_list.len();

        debug!("extending {} edges", edge_list.len());
        // blindly generate reverse edges for all edges with zero capacity
        edge_list.extend_from_within(..);
        edge_list.iter_mut().skip(number_of_edges).for_each(|edge| {
            edge.reverse();
            edge.data.capacity = 0;
        });
        debug!("into {} edges", edge_list.len());

        // dedup-merge edge set, by using the following trick: not the dedup(.) call
        // below takes the second argument as mut. When deduping equivalent values
        // a and b, then a is accumulated onto b.
        edge_list.sort_unstable();
        edge_list.dedup_by(|a, mut b| {
            // edges a and b are assumed to be equivalent in the residual graph if
            // (and only if) they are parallel. In other words, this removes parallel
            // edges in the residual graph and accumulates capacities on the remaining
            // egde.
            let result = a.source == b.source && a.target == b.target;
            if result {
                b.data.capacity += a.data.capacity;
            }
            result
        });

        // at this point the edge set of the residual graph doesn't have any
        // duplicates anymore. note that this is fine, as we are looking to
        // compute a node partition.
        Self {
            residual_graph: StaticGraph::new(edge_list),
            max_flow: 0,
            finished: false,
            level: Vec::new(),
            parents: Vec::new(),
            stack: Vec::new(),
            dfs_count: 0,
            bfs_count: 0,
            queue: VecDeque::new(),
            source,
            target,
        }
    }

    // create layer graph L^(s,t) by doing a reverse BFS from target to source.
    // All paths from s to t in the layer graph are then 'downhill'
    fn bfs(&mut self) -> bool {
        let start = Instant::now();
        self.bfs_count += 1;
        // init
        self.level.fill(usize::MAX);
        self.queue.clear();
        self.queue.push_back(self.target);
        self.level[self.target] = 0;

        let duration = start.elapsed();
        debug!("BFS init: {:?}", duration);

        // label residual graph nodes in BFS order, but in reverse starting from the target
        while let Some(u) = self.queue.pop_front() {
            for edge in self.residual_graph.edge_range(u) {
                let v = self.residual_graph.target(edge);
                if v != self.source && self.level[v] != usize::MAX {
                    // node v is not the source, but it is already visited. the source might be reached multiple times
                    continue;
                }

                // fetch capacity of reverse edge
                let rev_edge = self.residual_graph.find_edge_unchecked(v, u);
                let edge_capacity = self.residual_graph.data(rev_edge).capacity;
                if edge_capacity < 1 {
                    // no capacity to use on this edge
                    continue;
                }
                self.level[v] = self.level[u] + 1;
                if v != self.source {
                    self.queue.push_back(v);
                }
            }
        }
        let duration = start.elapsed();
        debug!(
            "BFS took: {:?}, upper bound on path length: {}",
            duration, self.level[self.source]
        );
        self.level[self.source] != usize::MAX
    }

    fn dfs(&mut self) -> i32 {
        let start = Instant::now();
        self.dfs_count += 1;
        self.stack.clear();
        self.parents.fill(NodeID::MAX);

        self.stack.push((self.source, i32::MAX));
        self.parents[self.source] = self.source;

        let duration = start.elapsed();
        debug!(" DFS init2: {:?}", duration);
        let mut blocking_flow = 0;
        while let Some((u, flow)) = self.stack.pop() {
            for edge in self.residual_graph.edge_range(u) {
                let v = self.residual_graph.target(edge);
                if self.parents[v] != NodeID::MAX {
                    // v already in queue
                    continue;
                }
                if self.level[u] < self.level[v] {
                    // edge is not leading to target on a path in the BFS tree
                    continue;
                }
                let available_capacity = self.residual_graph.data(edge).capacity;
                if available_capacity < 1 {
                    // no capacity to use on this edge
                    continue;
                }
                self.parents[v] = u;
                let flow = min(flow, available_capacity);
                if v == self.target {
                    let duration = start.elapsed();
                    debug!(" reached target {}: {:?}", v, duration);
                    // reached a target. Unpack path in reverse order, assign flow
                    let mut v = v; // mutable shadow
                    let mut closest_tail = u;
                    loop {
                        let u = self.parents[v];
                        if u == v {
                            break;
                        }
                        let fwd_edge = self.residual_graph.find_edge_unchecked(u, v);
                        self.residual_graph.data_mut(fwd_edge).capacity -= flow;
                        if 0 == self.residual_graph.data_mut(fwd_edge).capacity {
                            closest_tail = u;
                        }
                        let rev_edge = self.residual_graph.find_edge_unchecked(v, u);
                        self.residual_graph.data_mut(rev_edge).capacity += flow;
                        v = u;
                    }
                    let duration = start.elapsed();
                    debug!(" augmentation took: {:?}", duration);

                    // unwind stack till tail node, then continue the search
                    let before = self.stack.len();
                    while let Some((node, _)) = self.stack.pop() {
                        if self.parents[node] == closest_tail {
                            break; // while let
                        }
                    }
                    blocking_flow += flow;
                    debug!(" stack len before: {before}, after: {}", self.stack.len());

                    // make target reachable again
                    self.parents[self.target] = NodeID::MAX;
                    self.dfs_count += 1;

                    break; // for edge
                } else {
                    self.stack.push((v, flow));
                }
            }
        }

        let duration = start.elapsed();
        debug!("DFS took: {:?} (unsuccessful)", duration);
        // None
        blocking_flow
    }
}

impl MaxFlow for Dinic {
    fn run(&mut self) {
        debug!(
            "residual graph size: V {}, E {}",
            self.residual_graph.number_of_nodes(),
            self.residual_graph.number_of_edges()
        );

        let number_of_nodes = self.residual_graph.number_of_nodes();
        self.parents.resize(number_of_nodes, 0);
        self.level.resize(number_of_nodes, usize::MAX);
        self.queue.reserve(number_of_nodes);

        let mut flow = 0;
        while self.bfs() {
            flow += self.dfs();
        }
        self.max_flow = flow;
        self.finished = true;
    }
    fn max_flow(&self) -> Result<i32, String> {
        if !self.finished {
            return Err("Assigment was not computed.".to_string());
        }
        info!("finished in {} DFS, and {} BFS runs", self.dfs_count, self.bfs_count);
        Ok(self.max_flow)
    }

    fn assignment(&self, source: NodeID) -> Result<BitVec, String> {
        if !self.finished {
            return Err("Assigment was not computed.".to_string());
        }

        // run a reachability analysis
        let mut reachable = BitVec::with_capacity(self.residual_graph.number_of_nodes());
        reachable.resize(self.residual_graph.number_of_nodes(), false);
        let mut stack = vec![source];
        stack.reserve(self.residual_graph.number_of_nodes());
        reachable.set(source, true);
        while let Some(node) = stack.pop() {
            for edge in self.residual_graph.edge_range(node) {
                let target = self.residual_graph.target(edge);
                let reached = reachable.get(target as usize).unwrap();
                if !reached && self.residual_graph.data(edge).capacity > 0 {
                    stack.push(target);
                    reachable.set(target, true);
                }
            }
        }
        Ok(reachable)
    }
}

#[cfg(test)]
mod tests {

    use crate::dinic::Dinic;
    use crate::edge::InputEdge;
    use crate::max_flow::MaxFlow;
    use crate::max_flow::ResidualCapacity;
    use bitvec::bits;
    use bitvec::prelude::Lsb0;

    #[test]
    fn max_flow_clr() {
        let edges = vec![
            InputEdge::new(0, 1, ResidualCapacity::new(16)),
            InputEdge::new(0, 2, ResidualCapacity::new(13)),
            InputEdge::new(1, 2, ResidualCapacity::new(10)),
            InputEdge::new(1, 3, ResidualCapacity::new(12)),
            InputEdge::new(2, 1, ResidualCapacity::new(4)),
            InputEdge::new(2, 4, ResidualCapacity::new(14)),
            InputEdge::new(3, 2, ResidualCapacity::new(9)),
            InputEdge::new(3, 5, ResidualCapacity::new(20)),
            InputEdge::new(4, 3, ResidualCapacity::new(7)),
            InputEdge::new(4, 5, ResidualCapacity::new(4)),
        ];

        let source = 0;
        let target = 5;
        let mut max_flow_solver = Dinic::from_edge_list(edges, source, target);
        max_flow_solver.run();

        // it's OK to expect the solver to have run
        let max_flow = max_flow_solver
            .max_flow()
            .expect("max flow computation did not run");
        assert_eq!(23, max_flow);

        // it's OK to expect the solver to have run
        let assignment = max_flow_solver
            .assignment(source)
            .expect("assignment computation did not run");

        assert_eq!(assignment, bits![1, 1, 1, 0, 1, 0]);
    }

    #[test]
    fn max_flow_ita() {
        let edges = vec![
            InputEdge::new(0, 1, ResidualCapacity::new(5)),
            InputEdge::new(0, 4, ResidualCapacity::new(7)),
            InputEdge::new(0, 5, ResidualCapacity::new(6)),
            InputEdge::new(1, 2, ResidualCapacity::new(4)),
            InputEdge::new(1, 7, ResidualCapacity::new(3)),
            InputEdge::new(4, 7, ResidualCapacity::new(4)),
            InputEdge::new(4, 6, ResidualCapacity::new(1)),
            InputEdge::new(5, 6, ResidualCapacity::new(5)),
            InputEdge::new(2, 3, ResidualCapacity::new(3)),
            InputEdge::new(7, 3, ResidualCapacity::new(7)),
            InputEdge::new(6, 7, ResidualCapacity::new(1)),
            InputEdge::new(6, 3, ResidualCapacity::new(6)),
        ];

        let source = 0;
        let target = 3;
        let mut max_flow_solver = Dinic::from_edge_list(edges, source, target);
        max_flow_solver.run();

        // it's OK to expect the solver to have run
        let max_flow = max_flow_solver
            .max_flow()
            .expect("max flow computation did not run");
        assert_eq!(15, max_flow);

        // it's OK to expect the solver to have run
        let assignment = max_flow_solver
            .assignment(source)
            .expect("assignment computation did not run");
        assert_eq!(assignment, bits![1, 0, 0, 0, 1, 1, 0, 0]);
    }

    #[test]
    fn max_flow_yt() {
        let edges = vec![
            InputEdge::new(9, 0, ResidualCapacity::new(5)),
            InputEdge::new(9, 1, ResidualCapacity::new(10)),
            InputEdge::new(9, 2, ResidualCapacity::new(15)),
            InputEdge::new(0, 3, ResidualCapacity::new(10)),
            InputEdge::new(1, 0, ResidualCapacity::new(15)),
            InputEdge::new(1, 4, ResidualCapacity::new(20)),
            InputEdge::new(2, 5, ResidualCapacity::new(25)),
            InputEdge::new(3, 4, ResidualCapacity::new(25)),
            InputEdge::new(3, 6, ResidualCapacity::new(10)),
            InputEdge::new(4, 2, ResidualCapacity::new(5)),
            InputEdge::new(4, 7, ResidualCapacity::new(30)),
            InputEdge::new(5, 7, ResidualCapacity::new(20)),
            InputEdge::new(5, 8, ResidualCapacity::new(10)),
            InputEdge::new(7, 8, ResidualCapacity::new(15)),
            InputEdge::new(6, 10, ResidualCapacity::new(5)),
            InputEdge::new(7, 10, ResidualCapacity::new(15)),
            InputEdge::new(8, 10, ResidualCapacity::new(10)),
        ];

        let source = 9;
        let target = 10;
        let mut max_flow_solver = Dinic::from_edge_list(edges, source, target);
        max_flow_solver.run();

        // it's OK to expect the solver to have run
        let max_flow = max_flow_solver
            .max_flow()
            .expect("max flow computation did not run");
        assert_eq!(30, max_flow);

        // it's OK to expect the solver to have run
        let assignment = max_flow_solver
            .assignment(source)
            .expect("assignment computation did not run");
        assert_eq!(assignment, bits![0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]);
    }

    #[test]
    fn max_flow_ff() {
        let edges = vec![
            InputEdge::new(0, 1, ResidualCapacity::new(7)),
            InputEdge::new(0, 2, ResidualCapacity::new(3)),
            InputEdge::new(1, 2, ResidualCapacity::new(1)),
            InputEdge::new(1, 3, ResidualCapacity::new(6)),
            InputEdge::new(2, 4, ResidualCapacity::new(8)),
            InputEdge::new(3, 5, ResidualCapacity::new(2)),
            InputEdge::new(3, 2, ResidualCapacity::new(3)),
            InputEdge::new(4, 3, ResidualCapacity::new(2)),
            InputEdge::new(4, 5, ResidualCapacity::new(8)),
        ];

        let source = 0;
        let target = 5;
        let mut max_flow_solver = Dinic::from_edge_list(edges, source, target);
        max_flow_solver.run();

        // it's OK to expect the solver to have run
        let max_flow = max_flow_solver
            .max_flow()
            .expect("max flow computation did not run");
        assert_eq!(9, max_flow);

        // it's OK to expect the solver to have run
        let assignment = max_flow_solver
            .assignment(source)
            .expect("assignment computation did not run");
        assert_eq!(assignment, bits![1, 1, 0, 1, 0, 0]);
    }

    #[test]
    #[should_panic]
    fn flow_not_computed() {
        let edges = vec![
            InputEdge::new(0, 1, ResidualCapacity::new(7)),
            InputEdge::new(0, 2, ResidualCapacity::new(3)),
            InputEdge::new(1, 2, ResidualCapacity::new(1)),
            InputEdge::new(1, 3, ResidualCapacity::new(6)),
            InputEdge::new(2, 4, ResidualCapacity::new(8)),
            InputEdge::new(3, 5, ResidualCapacity::new(2)),
            InputEdge::new(3, 2, ResidualCapacity::new(3)),
            InputEdge::new(4, 3, ResidualCapacity::new(2)),
            InputEdge::new(4, 5, ResidualCapacity::new(8)),
        ];

        // the expect(.) call is being tested
        Dinic::from_edge_list(edges, 1, 2)
            .max_flow()
            .expect("max flow computation did not run");
    }

    #[test]
    #[should_panic]
    fn assignment_not_computed() {
        let edges = vec![
            InputEdge::new(0, 1, ResidualCapacity::new(7)),
            InputEdge::new(0, 2, ResidualCapacity::new(3)),
            InputEdge::new(1, 2, ResidualCapacity::new(1)),
            InputEdge::new(1, 3, ResidualCapacity::new(6)),
            InputEdge::new(2, 4, ResidualCapacity::new(8)),
            InputEdge::new(3, 5, ResidualCapacity::new(2)),
            InputEdge::new(3, 2, ResidualCapacity::new(3)),
            InputEdge::new(4, 3, ResidualCapacity::new(2)),
            InputEdge::new(4, 5, ResidualCapacity::new(8)),
        ];

        // the expect(.) call is being tested
        Dinic::from_edge_list(edges, 1, 2)
            .assignment(1)
            .expect("assignment computation did not run");
    }
}