1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
use crate::sync::batch_semaphore::Semaphore;
use std::cell::UnsafeCell;
use std::fmt;
use std::marker;
use std::mem;
use std::ops;

#[cfg(not(loom))]
const MAX_READS: usize = 32;

#[cfg(loom)]
const MAX_READS: usize = 10;

/// An asynchronous reader-writer lock.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// In comparison, a [`Mutex`] does not distinguish between readers or writers
/// that acquire the lock, therefore causing any tasks waiting for the lock to
/// become available to yield. An `RwLock` will allow any number of readers to
/// acquire the lock as long as a writer is not holding the lock.
///
/// The priority policy of Tokio's read-write lock is _fair_ (or
/// [_write-preferring_]), in order to ensure that readers cannot starve
/// writers. Fairness is ensured using a first-in, first-out queue for the tasks
/// awaiting the lock; if a task that wishes to acquire the write lock is at the
/// head of the queue, read locks will not be given out until the write lock has
/// been released. This is in contrast to the Rust standard library's
/// `std::sync::RwLock`, where the priority policy is dependent on the
/// operating system's implementation.
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies [`Send`] to be shared across threads. The RAII guards
/// returned from the locking methods implement [`Deref`](trait@std::ops::Deref)
/// (and [`DerefMut`](trait@std::ops::DerefMut)
/// for the `write` methods) to allow access to the content of the lock.
///
/// # Examples
///
/// ```
/// use tokio::sync::RwLock;
///
/// #[tokio::main]
/// async fn main() {
///     let lock = RwLock::new(5);
///
///     // many reader locks can be held at once
///     {
///         let r1 = lock.read().await;
///         let r2 = lock.read().await;
///         assert_eq!(*r1, 5);
///         assert_eq!(*r2, 5);
///     } // read locks are dropped at this point
///
///     // only one write lock may be held, however
///     {
///         let mut w = lock.write().await;
///         *w += 1;
///         assert_eq!(*w, 6);
///     } // write lock is dropped here
/// }
/// ```
///
/// [`Mutex`]: struct@super::Mutex
/// [`RwLock`]: struct@RwLock
/// [`RwLockReadGuard`]: struct@RwLockReadGuard
/// [`RwLockWriteGuard`]: struct@RwLockWriteGuard
/// [`Send`]: trait@std::marker::Send
/// [_write-preferring_]: https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock#Priority_policies
#[derive(Debug)]
pub struct RwLock<T: ?Sized> {
    //semaphore to coordinate read and write access to T
    s: Semaphore,

    //inner data T
    c: UnsafeCell<T>,
}

/// RAII structure used to release the shared read access of a lock when
/// dropped.
///
/// This structure is created by the [`read`] method on
/// [`RwLock`].
///
/// [`read`]: method@RwLock::read
/// [`RwLock`]: struct@RwLock
pub struct RwLockReadGuard<'a, T: ?Sized> {
    s: &'a Semaphore,
    data: *const T,
    marker: marker::PhantomData<&'a T>,
}

impl<'a, T> RwLockReadGuard<'a, T> {
    /// Make a new `RwLockReadGuard` for a component of the locked data.
    ///
    /// This operation cannot fail as the `RwLockReadGuard` passed in already
    /// locked the data.
    ///
    /// This is an associated function that needs to be
    /// used as `RwLockReadGuard::map(...)`. A method would interfere with
    /// methods of the same name on the contents of the locked data.
    ///
    /// This is an asynchronous version of [`RwLockReadGuard::map`] from the
    /// [`parking_lot` crate].
    ///
    /// [`RwLockReadGuard::map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockReadGuard.html#method.map
    /// [`parking_lot` crate]: https://crates.io/crates/parking_lot
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{RwLock, RwLockReadGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = RwLock::new(Foo(1));
    ///
    /// let guard = lock.read().await;
    /// let guard = RwLockReadGuard::map(guard, |f| &f.0);
    ///
    /// assert_eq!(1, *guard);
    /// # }
    /// ```
    #[inline]
    pub fn map<F, U: ?Sized>(this: Self, f: F) -> RwLockReadGuard<'a, U>
    where
        F: FnOnce(&T) -> &U,
    {
        let data = f(&*this) as *const U;
        let s = this.s;
        // NB: Forget to avoid drop impl from being called.
        mem::forget(this);
        RwLockReadGuard {
            s,
            data,
            marker: marker::PhantomData,
        }
    }

    /// Attempts to make a new [`RwLockReadGuard`] for a component of the
    /// locked data. The original guard is returned if the closure returns
    /// `None`.
    ///
    /// This operation cannot fail as the `RwLockReadGuard` passed in already
    /// locked the data.
    ///
    /// This is an associated function that needs to be used as
    /// `RwLockReadGuard::try_map(..)`. A method would interfere with methods of the
    /// same name on the contents of the locked data.
    ///
    /// This is an asynchronous version of [`RwLockReadGuard::try_map`] from the
    /// [`parking_lot` crate].
    ///
    /// [`RwLockReadGuard::try_map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockReadGuard.html#method.try_map
    /// [`parking_lot` crate]: https://crates.io/crates/parking_lot
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{RwLock, RwLockReadGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = RwLock::new(Foo(1));
    ///
    /// let guard = lock.read().await;
    /// let guard = RwLockReadGuard::try_map(guard, |f| Some(&f.0)).expect("should not fail");
    ///
    /// assert_eq!(1, *guard);
    /// # }
    /// ```
    #[inline]
    pub fn try_map<F, U: ?Sized>(this: Self, f: F) -> Result<RwLockReadGuard<'a, U>, Self>
    where
        F: FnOnce(&T) -> Option<&U>,
    {
        let data = match f(&*this) {
            Some(data) => data as *const U,
            None => return Err(this),
        };
        let s = this.s;
        // NB: Forget to avoid drop impl from being called.
        mem::forget(this);
        Ok(RwLockReadGuard {
            s,
            data,
            marker: marker::PhantomData,
        })
    }
}

impl<'a, T: ?Sized> fmt::Debug for RwLockReadGuard<'a, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> fmt::Display for RwLockReadGuard<'a, T>
where
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> Drop for RwLockReadGuard<'a, T> {
    fn drop(&mut self) {
        self.s.release(1);
    }
}

/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure is created by the [`write`] and method
/// on [`RwLock`].
///
/// [`write`]: method@RwLock::write
/// [`RwLock`]: struct@RwLock
pub struct RwLockWriteGuard<'a, T: ?Sized> {
    s: &'a Semaphore,
    data: *mut T,
    marker: marker::PhantomData<&'a mut T>,
}

impl<'a, T: ?Sized> RwLockWriteGuard<'a, T> {
    /// Atomically downgrades a write lock into a read lock without allowing
    /// any writers to take exclusive access of the lock in the meantime.
    ///
    /// **Note:** This won't *necessarily* allow any additional readers to acquire
    /// locks, since [`RwLock`] is fair and it is possible that a writer is next
    /// in line.
    ///
    /// Returns an RAII guard which will drop the read access of this rwlock
    /// when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::sync::RwLock;
    /// # use std::sync::Arc;
    /// #
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(1));
    ///
    /// let n = lock.write().await;
    ///   
    /// let cloned_lock = lock.clone();
    /// let handle = tokio::spawn(async move {
    ///     *cloned_lock.write().await = 2;
    /// });
    ///
    /// let n = n.downgrade();
    /// assert_eq!(*n, 1, "downgrade is atomic");
    ///
    /// drop(n);
    /// handle.await.unwrap();
    /// assert_eq!(*lock.read().await, 2, "second writer obtained write lock");
    /// # }
    /// ```
    ///
    /// [`RwLock`]: struct@RwLock
    pub fn downgrade(self) -> RwLockReadGuard<'a, T> {
        let RwLockWriteGuard { s, data, .. } = self;

        // Release all but one of the permits held by the write guard
        s.release(MAX_READS - 1);
        // NB: Forget to avoid drop impl from being called.
        mem::forget(self);
        RwLockReadGuard {
            s,
            data,
            marker: marker::PhantomData,
        }
    }
}

impl<'a, T: ?Sized> fmt::Debug for RwLockWriteGuard<'a, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> fmt::Display for RwLockWriteGuard<'a, T>
where
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> Drop for RwLockWriteGuard<'a, T> {
    fn drop(&mut self) {
        self.s.release(MAX_READS);
    }
}

#[test]
#[cfg(not(loom))]
fn bounds() {
    fn check_send<T: Send>() {}
    fn check_sync<T: Sync>() {}
    fn check_unpin<T: Unpin>() {}
    // This has to take a value, since the async fn's return type is unnameable.
    fn check_send_sync_val<T: Send + Sync>(_t: T) {}

    check_send::<RwLock<u32>>();
    check_sync::<RwLock<u32>>();
    check_unpin::<RwLock<u32>>();

    check_send::<RwLockReadGuard<'_, u32>>();
    check_sync::<RwLockReadGuard<'_, u32>>();
    check_unpin::<RwLockReadGuard<'_, u32>>();

    check_send::<RwLockWriteGuard<'_, u32>>();
    check_sync::<RwLockWriteGuard<'_, u32>>();
    check_unpin::<RwLockWriteGuard<'_, u32>>();

    let rwlock = RwLock::new(0);
    check_send_sync_val(rwlock.read());
    check_send_sync_val(rwlock.write());
}

// As long as T: Send + Sync, it's fine to send and share RwLock<T> between threads.
// If T were not Send, sending and sharing a RwLock<T> would be bad, since you can access T through
// RwLock<T>.
unsafe impl<T> Send for RwLock<T> where T: ?Sized + Send {}
unsafe impl<T> Sync for RwLock<T> where T: ?Sized + Send + Sync {}
// NB: These impls need to be explicit since we're storing a raw pointer.
// Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over
// `T` is `Send`.
unsafe impl<T> Send for RwLockReadGuard<'_, T> where T: ?Sized + Sync {}
unsafe impl<T> Sync for RwLockReadGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Sync for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {}
// Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over
// `T` is `Send` - but since this is also provides mutable access, we need to
// make sure that `T` is `Send` since its value can be sent across thread
// boundaries.
unsafe impl<T> Send for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {}

impl<T: ?Sized> RwLock<T> {
    /// Creates a new instance of an `RwLock<T>` which is unlocked.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::RwLock;
    ///
    /// let lock = RwLock::new(5);
    /// ```
    pub fn new(value: T) -> RwLock<T>
    where
        T: Sized,
    {
        RwLock {
            c: UnsafeCell::new(value),
            s: Semaphore::new(MAX_READS),
        }
    }

    /// Creates a new instance of an `RwLock<T>` which is unlocked.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::RwLock;
    ///
    /// static LOCK: RwLock<i32> = RwLock::const_new(5);
    /// ```
    #[cfg(all(feature = "parking_lot", not(all(loom, test))))]
    #[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
    pub const fn const_new(value: T) -> RwLock<T>
    where
        T: Sized,
    {
        RwLock {
            c: UnsafeCell::new(value),
            s: Semaphore::const_new(MAX_READS),
        }
    }

    /// Locks this rwlock with shared read access, causing the current task
    /// to yield until the lock has been acquired.
    ///
    /// The calling task will yield until there are no more writers which
    /// hold the lock. There may be other readers currently inside the lock when
    /// this method returns.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::RwLock;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let lock = Arc::new(RwLock::new(1));
    ///     let c_lock = lock.clone();
    ///
    ///     let n = lock.read().await;
    ///     assert_eq!(*n, 1);
    ///
    ///     tokio::spawn(async move {
    ///         // While main has an active read lock, we acquire one too.
    ///         let r = c_lock.read().await;
    ///         assert_eq!(*r, 1);
    ///     }).await.expect("The spawned task has paniced");
    ///
    ///     // Drop the guard after the spawned task finishes.
    ///     drop(n);
    ///}
    /// ```
    pub async fn read(&self) -> RwLockReadGuard<'_, T> {
        self.s.acquire(1).await.unwrap_or_else(|_| {
            // The semaphore was closed. but, we never explicitly close it, and we have a
            // handle to it through the Arc, which means that this can never happen.
            unreachable!()
        });
        RwLockReadGuard {
            s: &self.s,
            data: self.c.get(),
            marker: marker::PhantomData,
        }
    }

    /// Locks this rwlock with exclusive write access, causing the current task
    /// to yield until the lock has been acquired.
    ///
    /// This function will not return while other writers or other readers
    /// currently have access to the lock.
    ///
    /// Returns an RAII guard which will drop the write access of this rwlock
    /// when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::RwLock;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///   let lock = RwLock::new(1);
    ///
    ///   let mut n = lock.write().await;
    ///   *n = 2;
    ///}
    /// ```
    pub async fn write(&self) -> RwLockWriteGuard<'_, T> {
        self.s.acquire(MAX_READS as u32).await.unwrap_or_else(|_| {
            // The semaphore was closed. but, we never explicitly close it, and we have a
            // handle to it through the Arc, which means that this can never happen.
            unreachable!()
        });
        RwLockWriteGuard {
            s: &self.s,
            data: self.c.get(),
            marker: marker::PhantomData,
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `RwLock` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::RwLock;
    ///
    /// fn main() {
    ///     let mut lock = RwLock::new(1);
    ///
    ///     let n = lock.get_mut();
    ///     *n = 2;
    /// }
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe {
            // Safety: This is https://github.com/rust-lang/rust/pull/76936
            &mut *self.c.get()
        }
    }

    /// Consumes the lock, returning the underlying data.
    pub fn into_inner(self) -> T
    where
        T: Sized,
    {
        self.c.into_inner()
    }
}

impl<T: ?Sized> ops::Deref for RwLockReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.data }
    }
}

impl<T: ?Sized> ops::Deref for RwLockWriteGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.data }
    }
}

impl<T: ?Sized> ops::DerefMut for RwLockWriteGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data }
    }
}

impl<T> From<T> for RwLock<T> {
    fn from(s: T) -> Self {
        Self::new(s)
    }
}

impl<T: ?Sized> Default for RwLock<T>
where
    T: Default,
{
    fn default() -> Self {
        Self::new(T::default())
    }
}