1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
//! A multi-producer, multi-consumer broadcast queue. Each sent value is seen by
//! all consumers.
//!
//! A [`Sender`] is used to broadcast values to **all** connected [`Receiver`]
//! values. Both [`Sender`] and [`Receiver`] handles are clone-able, allowing
//! concurrent send and receive actions. Additionally, [`Sender`] is `Sync`.
//!
//! When a value is sent, **all** [`Receiver`] handles are notified and will
//! receive the value. The value is stored once inside the channel and cloned on
//! demand for each receiver. Once all receivers have received a clone of the
//! value, the value is released from the channel.
//!
//! A channel is created by calling [`channel`], specifying the maximum number
//! of messages the channel can retain at any given time.
//!
//! New [`Receiver`] handles are created by calling [`Sender::subscribe`]. The
//! returned [`Receiver`] will receive values sent **after** the call to
//! `subscribe`.
//!
//! ## Lagging
//!
//! As sent messages must be retained until **all** [`Receiver`] handles receive
//! a clone, broadcast channels are suspectible to the "slow receiver" problem.
//! In this case, all but one receiver are able to receive values at the rate
//! they are sent. Because one receiver is stalled, the channel starts to fill
//! up.
//!
//! This broadcast channel implementation handles this case by setting a hard
//! upper bound on the number of values the channel may retain at any given
//! time. This upper bound is passed to the [`channel`] function as an argument.
//!
//! If a value is sent when the channel is at capacity, the oldest value
//! currently held by the channel is released. This frees up space for the new
//! value. Any receiver that has not yet seen the released value will return
//! [`RecvError::Lagged`] the next time [`recv`] is called.
//!
//! Once [`RecvError::Lagged`] is returned, the lagging receiver's position is
//! updated to the oldest value contained by the channel. The next call to
//! [`recv`] will return this value.
//!
//! This behavior enables a receiver to detect when it has lagged so far behind
//! that data has been dropped. The caller may decide how to respond to this:
//! either by aborting its task or by tolerating lost messages and resuming
//! consumption of the channel.
//!
//! ## Closing
//!
//! When **all** [`Sender`] handles have been dropped, no new values may be
//! sent. At this point, the channel is "closed". Once a receiver has received
//! all values retained by the channel, the next call to [`recv`] will return
//! with [`RecvError::Closed`].
//!
//! [`Sender`]: crate::sync::broadcast::Sender
//! [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
//! [`Receiver`]: crate::sync::broadcast::Receiver
//! [`channel`]: crate::sync::broadcast::channel
//! [`RecvError::Lagged`]: crate::sync::broadcast::RecvError::Lagged
//! [`RecvError::Closed`]: crate::sync::broadcast::RecvError::Closed
//! [`recv`]: crate::sync::broadcast::Receiver::recv
//!
//! # Examples
//!
//! Basic usage
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//!     let (tx, mut rx1) = broadcast::channel(16);
//!     let mut rx2 = tx.subscribe();
//!
//!     tokio::spawn(async move {
//!         assert_eq!(rx1.recv().await.unwrap(), 10);
//!         assert_eq!(rx1.recv().await.unwrap(), 20);
//!     });
//!
//!     tokio::spawn(async move {
//!         assert_eq!(rx2.recv().await.unwrap(), 10);
//!         assert_eq!(rx2.recv().await.unwrap(), 20);
//!     });
//!
//!     tx.send(10).unwrap();
//!     tx.send(20).unwrap();
//! }
//! ```
//!
//! Handling lag
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//!     let (tx, mut rx) = broadcast::channel(2);
//!
//!     tx.send(10).unwrap();
//!     tx.send(20).unwrap();
//!     tx.send(30).unwrap();
//!
//!     // The receiver lagged behind
//!     assert!(rx.recv().await.is_err());
//!
//!     // At this point, we can abort or continue with lost messages
//!
//!     assert_eq!(20, rx.recv().await.unwrap());
//!     assert_eq!(30, rx.recv().await.unwrap());
//! }

use crate::loom::cell::CausalCell;
use crate::loom::future::AtomicWaker;
use crate::loom::sync::{Mutex, Arc, Condvar};
use crate::loom::sync::atomic::{AtomicBool, AtomicPtr, AtomicUsize, spin_loop_hint};

use std::fmt;
use std::ptr;
use std::sync::atomic::Ordering::SeqCst;
use std::task::{Context, Poll, Waker};
use std::usize;

/// Sending-half of the [`broadcast`] channel.
///
/// May be used from many threads. Messages can be sent with
/// [`send`][Sender::send].
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Sender<T> {
    shared: Arc<Shared<T>>,
}

/// Receiving-half of the [`broadcast`] channel.
///
/// Must not be used concurrently. Messages may be retrieved using
/// [`recv`][Receiver::recv].
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Receiver<T> {
    /// State shared with all receivers and senders.
    shared: Arc<Shared<T>>,

    /// Next position to read from
    next: u64,

    /// Waiter state
    wait: Arc<WaitNode>,
}

/// Error returned by [`Sender::send`][Sender::send].
///
/// A **send** operation can only fail if there are no active receivers,
/// implying that the message could never be received. The error contains the
/// message being sent as a payload so it can be recovered.
#[derive(Debug)]
pub struct SendError<T>(pub T);

/// An error returned from the [`recv`] function on a [`Receiver`].
///
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
#[derive(Debug)]
pub enum RecvError {
    /// There are no more active senders implying no further messages will ever
    /// be sent.
    Closed,

    /// The receiver lagged too far behind and has been forcibly disconnected.
    /// Attempting to receive again will return the oldest message still
    /// retained by the channel.
    ///
    /// Includes the number of skipped messages.
    Lagged(u64),
}

/// An error returned from the [`try_recv`] function on a [`Receiver`].
///
/// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
#[derive(Debug)]
pub enum TryRecvError {
    /// The channel is currently empty. There are still active
    /// [`Sender`][Sender] handles, so data may yet become available.
    Empty,

    /// There are no more active senders implying no further messages will ever
    /// be sent.
    Closed,

    /// The receiver lagged too far behind and has been forcibly disconnected.
    /// Attempting to receive again will return the oldest message still
    /// retained by the channel.
    ///
    /// Includes the number of skipped messages.
    Lagged(u64),
}

/// Data shared between senders and receivers
struct Shared<T> {
    /// slots in the channel
    buffer: Box<[Slot<T>]>,

    /// Mask a position -> index
    mask: usize,

    /// Tail of the queue
    tail: Mutex<Tail>,

    /// Notifies a sender that the slot is unlocked
    condvar: Condvar,

    /// Stack of pending waiters
    wait_stack: AtomicPtr<WaitNode>,

    /// Number of outstanding Sender handles
    num_tx: AtomicUsize,
}

/// Next position to write a value
struct Tail {
    /// Next position to write to
    pos: u64,

    /// Number of active receivers
    rx_cnt: usize,
}

/// Node in the linked list
struct Slot<T> {
    /// Remaining numer of senders that are expected to see this value.
    ///
    /// When this goes to zero, the value is released.
    rem: AtomicUsize,

    /// Used to lock the `write` field.
    lock: AtomicUsize,

    /// The value being broadcast
    ///
    /// Synchronized by `state`
    write: Write<T>,
}

/// A write in the buffer
struct Write<T> {
    /// Uniquely identifies this write
    pos: CausalCell<u64>,

    /// The written value
    val: CausalCell<Option<T>>,
}

/// Tracks a waiting receiver
#[derive(Debug)]
struct WaitNode {
    /// True if queued
    queued: AtomicBool,

    /// Task to wake when a permit is made available.
    waker: AtomicWaker,

    /// Next pointer in the stack of waiting senders.
    next: CausalCell<*const WaitNode>,
}

struct RecvGuard<'a, T> {
    slot: &'a Slot<T>,
    condvar: &'a Condvar,
}

/// Max number of receivers. Reserve space to lock.
const MAX_RECEIVERS: usize = usize::MAX >> 1;

/// Create a bounded, multi-producer, multi-consumer channel where each sent
/// value is broadcasted to all active receivers.
///
/// All data sent on [`Sender`] will become available on every active
/// [`Receiver`] in the same order as it was sent.
///
/// The `Sender` can be cloned to `send` to the same channel from multiple
/// points in the process or it can be used concurrently from an `Arc`. New
/// `Receiver` handles are created by calling [`Sender::subscribe`].
///
/// If all [`Receiver`] handles are dropped, the `send` method will return a
/// [`SendError`]. Similarly, if all [`Sender`] handles are dropped, the [`recv`]
/// method will return a [`RecvError`].
///
/// [`Sender`]: crate::sync::broadcast::Sender
/// [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`SendError`]: crate::sync::broadcast::SendError
/// [`RecvError`]: crate::sync::broadcast::RecvError
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
pub fn channel<T>(mut capacity: usize) -> (Sender<T>, Receiver<T>) {
    assert!(capacity > 0, "capacity is empty");
    assert!(capacity <= usize::MAX >> 1, "requested capacity too large");

    // Round to a power of two
    capacity = capacity.next_power_of_two();

    let mut buffer = Vec::with_capacity(capacity);

    for i in 0..capacity {
        buffer.push(Slot {
            rem: AtomicUsize::new(0),
            lock: AtomicUsize::new(0),
            write: Write {
                pos: CausalCell::new((i as u64).wrapping_sub(capacity as u64)),
                val: CausalCell::new(None),
            },
        });
    }

    let shared = Arc::new(Shared {
        buffer: buffer.into_boxed_slice(),
        mask: capacity - 1,
        tail: Mutex::new(Tail {
            pos: 0,
            rx_cnt: 1,
        }),
        condvar: Condvar::new(),
        wait_stack: AtomicPtr::new(ptr::null_mut()),
        num_tx: AtomicUsize::new(1),
    });

    let rx = Receiver {
        shared: shared.clone(),
        next: 0,
        wait: Arc::new(WaitNode {
            queued: AtomicBool::new(false),
            waker: AtomicWaker::new(),
            next: CausalCell::new(ptr::null()),
        }),
    };

    let tx = Sender {
        shared,
    };

    (tx, rx)
}

unsafe impl<T: Send> Send for Sender<T> {}
unsafe impl<T: Send> Sync for Sender<T> {}

unsafe impl<T: Send> Send for Receiver<T> {}
unsafe impl<T: Send> Sync for Receiver<T> {}

impl<T> Sender<T> {
    /// Attempts to send a value to all active [`Receiver`] handles, returning
    /// it back if it could not be sent.
    ///
    /// A successful send occurs when there is at least one active [`Receiver`]
    /// handle. An unsuccessful send would be one where all associated
    /// [`Receiver`] handles have already been dropped.
    ///
    /// # Return
    ///
    /// On success, the number of subscribed [`Receiver`] handles is returned.
    /// This does not mean that this number of receivers will see the message as
    /// a receiver may drop before receiving the message.
    ///
    /// # Note
    ///
    /// A return value of `Ok` **does not** mean that the sent value will be
    /// observed by all or any of the active [`Receiver`] handles. [`Receiver`]
    /// handles may be dropped before receiving the sent message.
    ///
    /// A return value of `Err` **does not** mean that future calls to `send`
    /// will fail. New [`Receiver`] handles may be created by calling
    /// [`subscribe`].
    ///
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx1.recv().await.unwrap(), 10);
    ///         assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx2.recv().await.unwrap(), 10);
    ///         assert_eq!(rx2.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    /// }
    /// ```
    pub fn send(&self, value: T) -> Result<usize, SendError<T>> {
        self.send2(Some(value))
            .map_err(|SendError(maybe_v)| SendError(maybe_v.unwrap()))
    }

    /// Create a new [`Receiver`] handle that will receive values sent **after**
    /// this call to `subscribe`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, _rx) = broadcast::channel(16);
    ///
    ///     // Will not be seen
    ///     tx.send(10).unwrap();
    ///
    ///     let mut rx = tx.subscribe();
    ///
    ///     tx.send(20).unwrap();
    ///
    ///     let value = rx.recv().await.unwrap();
    ///     assert_eq!(20, value);
    /// }
    /// ```
    pub fn subscribe(&self) -> Receiver<T> {
        let shared = self.shared.clone();

        let mut tail = shared.tail.lock().unwrap();

        if tail.rx_cnt == MAX_RECEIVERS {
            panic!("max receivers");
        }

        tail.rx_cnt = tail.rx_cnt.checked_add(1).expect("overflow");
        let next = tail.pos;

        drop(tail);

        Receiver {
            shared,
            next,
            wait: Arc::new(WaitNode {
                queued: AtomicBool::new(false),
                waker: AtomicWaker::new(),
                next: CausalCell::new(ptr::null()),
            }),
        }
    }

    /// Returns the number of active receivers
    ///
    /// An active receiver is a [`Receiver`] handle returned from [`channel`] or
    /// [`subscribe`]. These are the handles that will receive values sent on
    /// this [`Sender`].
    ///
    /// # Note
    ///
    /// It is not guaranteed that a sent message will reach this number of
    /// receivers. Active receivers may never call [`recv`] again before
    /// dropping.
    ///
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`Sender`]: crate::sync::broadcast::Sender
    /// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
    /// [`channel`]: crate::sync::broadcast::channel
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, _rx1) = broadcast::channel(16);
    ///
    ///     assert_eq!(1, tx.receiver_count());
    ///
    ///     let mut _rx2 = tx.subscribe();
    ///
    ///     assert_eq!(2, tx.receiver_count());
    ///
    ///     tx.send(10).unwrap();
    /// }
    /// ```
    pub fn receiver_count(&self) -> usize {
        let tail = self.shared.tail.lock().unwrap();
        tail.rx_cnt
    }

    fn send2(&self, value: Option<T>) -> Result<usize, SendError<Option<T>>> {
        let mut tail = self.shared.tail.lock().unwrap();

        if tail.rx_cnt == 0 {
            return Err(SendError(value));
        }

        // Position to write into
        let pos = tail.pos;
        let rem = tail.rx_cnt;
        let idx = (pos & self.shared.mask as u64) as usize;

        // Update the tail position
        tail.pos = tail.pos.wrapping_add(1);

        // Get the slot
        let slot = &self.shared.buffer[idx];

        // Acquire the write lock
        let mut prev = slot.lock.fetch_add(1, SeqCst);

        while prev & !1 != 0 {
            // Concurrent readers, we must go to sleep
            tail = self.shared.condvar.wait(tail).unwrap();

            prev = slot.lock.load(SeqCst);
        }

        // Release the mutex
        drop(tail);

        // Slot lock acquired
        slot.write.pos.with_mut(|ptr| unsafe { *ptr = pos });
        slot.write.val.with_mut(|ptr| unsafe { *ptr = value });

        // Set remaining receivers
        slot.rem.store(rem, SeqCst);

        // Release the slot lock
        slot.lock.store(0, SeqCst);

        // Notify waiting receivers
        self.notify_rx();

        Ok(rem)
    }

    fn notify_rx(&self) {
        let mut curr = self.shared.wait_stack.swap(ptr::null_mut(), SeqCst) as *const WaitNode;

        while !curr.is_null() {
            let waiter = unsafe { Arc::from_raw(curr) };

            // Update `curr` before toggling `queued` and waking
            curr = waiter.next.with(|ptr| unsafe { *ptr });

            // Unset queued
            waiter.queued.store(false, SeqCst);

            // Wake
            waiter.waker.wake();
        }
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        let shared = self.shared.clone();
        shared.num_tx.fetch_add(1, SeqCst);

        Sender { shared }
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        if 1 == self.shared.num_tx.fetch_sub(1, SeqCst) {
            let _ = self.send2(None);
        }
    }
}

impl<T> Receiver<T> {
    /// Lock the next value if there is one.
    ///
    /// The caller is responsible for unlocking
    fn recv_ref(&mut self, spin: bool) -> Result<RecvGuard<'_, T>, TryRecvError> {
        let idx = (self.next & self.shared.mask as u64) as usize;

        // The slot holding the next value to read
        let slot = &self.shared.buffer[idx];

        // Lock the slot
        if !slot.try_rx_lock() {
            if spin {
                while !slot.try_rx_lock() {
                    spin_loop_hint();
                }
            } else {
                return Err(TryRecvError::Empty);
            }
        }

        let guard = RecvGuard {
            slot,
            condvar: &self.shared.condvar,
        };

        if guard.pos() != self.next {
            let pos = guard.pos();

            guard.drop_no_rem_dec();

            if pos.wrapping_add(self.shared.buffer.len() as u64) == self.next {
                return Err(TryRecvError::Empty);
            } else {
                let tail = self.shared.tail.lock().unwrap();

                // `tail.pos` points to the slot the **next** send writes to.
                // Because a receiver is lagging, this slot also holds the
                // oldest value. To make the positions match, we subtract the
                // capacity.
                let next = tail.pos.wrapping_sub(self.shared.buffer.len() as u64);
                let missed = next.wrapping_sub(self.next);

                self.next = next;

                return Err(TryRecvError::Lagged(missed));
            }
        }

        self.next = self.next.wrapping_add(1);

        Ok(guard)
    }
}

impl<T> Receiver<T>
where
    T: Clone,
{
    /// Attempts to return a pending value on this receiver without awaiting.
    ///
    /// This is useful for a flavor of "optimistic check" before deciding to
    /// await on a receiver.
    ///
    /// Compared with [`recv`], this function has three failure cases instead of one
    /// (one for closed, one for an empty buffer, one for a lagging receiver).
    ///
    /// `Err(TryRecvError::Closed)` is returned when all `Sender` halves have
    /// dropped, indicating that no further values can be sent on the channel.
    ///
    /// If the [`Receiver`] handle falls behind, once the channel is full, newly
    /// sent values will overwrite old values. At this point, a call to [`recv`]
    /// will return with `Err(TryRecvError::Lagged)` and the [`Receiver`]'s
    /// internal cursor is updated to point to the oldest value still held by
    /// the channel. A subsequent call to [`try_recv`] will return this value
    /// **unless** it has been since overwritten. If there are no values to
    /// receive, `Err(TryRecvError::Empty)` is returned.
    ///
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = broadcast::channel(16);
    ///
    ///     assert!(rx.try_recv().is_err());
    ///
    ///     tx.send(10).unwrap();
    ///
    ///     let value = rx.try_recv().unwrap();
    ///     assert_eq!(10, value);
    /// }
    /// ```
    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
        let guard = self.recv_ref(false)?;
        guard.clone_value().ok_or(TryRecvError::Closed)
    }

    #[doc(hidden)] // TODO: document
    pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
        if let Some(value) = ok_empty(self.try_recv())? {
            return Poll::Ready(Ok(value));
        }

        self.register_waker(cx.waker());

        if let Some(value) = ok_empty(self.try_recv())? {
            Poll::Ready(Ok(value))
        } else {
            Poll::Pending
        }
    }

    /// Receive the next value for this receiver.
    ///
    /// Each [`Receiver`] handle will receive a clone of all values sent
    /// **after** it has subscribed.
    ///
    /// `Err(RecvError::Closed)` is returned when all `Sender` halves have
    /// dropped, indicating that no further values can be sent on the channel.
    ///
    /// If the [`Receiver`] handle falls behind, once the channel is full, newly
    /// sent values will overwrite old values. At this point, a call to [`recv`]
    /// will return with `Err(RecvError::Lagged)` and the [`Receiver`]'s
    /// internal cursor is updated to point to the oldest value still held by
    /// the channel. A subsequent call to [`recv`] will return this value
    /// **unless** it has been since overwritten.
    ///
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx1.recv().await.unwrap(), 10);
    ///         assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx2.recv().await.unwrap(), 10);
    ///         assert_eq!(rx2.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    /// }
    /// ```
    ///
    /// Handling lag
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = broadcast::channel(2);
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    ///     tx.send(30).unwrap();
    ///
    ///     // The receiver lagged behind
    ///     assert!(rx.recv().await.is_err());
    ///
    ///     // At this point, we can abort or continue with lost messages
    ///
    ///     assert_eq!(20, rx.recv().await.unwrap());
    ///     assert_eq!(30, rx.recv().await.unwrap());
    /// }
    pub async fn recv(&mut self) -> Result<T, RecvError> {
        use crate::future::poll_fn;

        poll_fn(|cx| self.poll_recv(cx)).await
    }

    fn register_waker(&self, cx: &Waker) {
        self.wait.waker.register_by_ref(cx);

        if !self.wait.queued.load(SeqCst) {
            // Set `queued` before queuing.
            self.wait.queued.store(true, SeqCst);

            let mut curr = self.shared.wait_stack.load(SeqCst);

            // The ref count is decremented in `notify_rx` when all nodes are
            // removed from the waiter stack.
            let node = Arc::into_raw(self.wait.clone()) as *mut _;

            loop {
                // Safety: `queued == false` means the caller has exclusive
                // access to `self.wait.next`.
                self.wait.next.with_mut(|ptr| unsafe { *ptr = curr });

                let res = self.shared.wait_stack.compare_exchange(curr, node, SeqCst, SeqCst);

                match res {
                    Ok(_) => return,
                    Err(actual) => curr = actual,
                }
            }
        }
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        let mut tail = self.shared.tail.lock().unwrap();

        tail.rx_cnt -= 1;
        let until = tail.pos;

        drop(tail);

        while self.next != until {
            match self.recv_ref(true) {
                // Ignore the value
                Ok(_) => {}
                // The channel is closed
                Err(TryRecvError::Closed) => break,
                // Ignore lagging, we will catch up
                Err(TryRecvError::Lagged(..)) => {}
                // Can't be empty
                Err(TryRecvError::Empty) => panic!("unexpected empty broadcast channel"),
            }
        }
    }
}

impl<T> Drop for Shared<T> {
    fn drop(&mut self) {
        // Clear the wait stack
        let mut curr = *self.wait_stack.get_mut() as *const WaitNode;

        while !curr.is_null() {
            let waiter = unsafe { Arc::from_raw(curr) };
            curr = waiter.next.with(|ptr| unsafe { *ptr });
        }
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "broadcast::Sender")
    }
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "broadcast::Receiver")
    }
}

impl<T> Slot<T> {
    /// Try to lock the slot for a receiver. If `false`, then a sender holds the
    /// lock and the calling task will be notified once the sender has released
    /// the lock.
    fn try_rx_lock(&self) -> bool {
        let mut curr = self.lock.load(SeqCst);

        loop {
            if curr & 1 == 1 {
                // Locked by sender
                return false;
            }

            // Only increment (by 2) if the LSB "lock" bit is not set.
            let res = self.lock.compare_exchange(curr, curr + 2, SeqCst, SeqCst);

            match res {
                Ok(_) => return true,
                Err(actual) => curr = actual,
            }
        }
    }

    fn rx_unlock(&self, condvar: &Condvar, rem_dec: bool) {
        if rem_dec {
            // Decrement the remaining counter
            if 1 == self.rem.fetch_sub(1, SeqCst) {
                // Last receiver, drop the value
                self.write.val.with_mut(|ptr| unsafe { *ptr = None });
            }
        }

        let prev = self.lock.fetch_sub(2, SeqCst);

        if prev & 1 == 1 {
            // Sender waiting for lock
            condvar.notify_one();
        }
    }
}

impl<'a, T> RecvGuard<'a, T> {
    fn pos(&self) -> u64 {
        self.slot.write.pos.with(|ptr| unsafe { *ptr })
    }

    fn clone_value(&self) -> Option<T>
    where
        T: Clone,
    {
        self.slot.write.val.with(|ptr| unsafe { (*ptr).clone() })
    }

    fn drop_no_rem_dec(self) {
        use std::mem;

        self.slot.rx_unlock(self.condvar, false);

        mem::forget(self);
    }
}

impl<'a, T> Drop for RecvGuard<'a, T> {
    fn drop(&mut self) {
        self.slot.rx_unlock(self.condvar, true)
    }
}

fn ok_empty<T>(res: Result<T, TryRecvError>) -> Result<Option<T>, RecvError> {
    match res {
        Ok(value) => Ok(Some(value)),
        Err(TryRecvError::Empty) => Ok(None),
        Err(TryRecvError::Lagged(n)) => Err(RecvError::Lagged(n)),
        Err(TryRecvError::Closed) => Err(RecvError::Closed),
    }
}