[][src]Struct tokio::net::TcpStream

pub struct TcpStream { /* fields omitted */ }
This is supported on feature="tcp" only.

A TCP stream between a local and a remote socket.

A TCP stream can either be created by connecting to an endpoint, via the connect method, or by accepting a connection from a listener.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Write some data.
    stream.write_all(b"hello world!").await?;

    Ok(())
}

Methods

impl TcpStream[src]

pub async fn connect<A: ToSocketAddrs>(addr: A) -> Result<TcpStream>[src]

This is supported on feature="tcp" only.

Opens a TCP connection to a remote host.

addr is an address of the remote host. Anything which implements ToSocketAddrs trait can be supplied for the address.

If addr yields multiple addresses, connect will be attempted with each of the addresses until a connection is successful. If none of the addresses result in a successful connection, the error returned from the last connection attempt (the last address) is returned.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Write some data.
    stream.write_all(b"hello world!").await?;

    Ok(())
}

pub fn from_std(stream: TcpStream) -> Result<TcpStream>[src]

This is supported on feature="tcp" only.

Creates new TcpStream from a std::net::TcpStream.

This function will convert a TCP stream created by the standard library to a TCP stream ready to be used with the provided event loop handle.

Examples

use std::error::Error;
use tokio::net::TcpStream;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    let std_stream = std::net::TcpStream::connect("127.0.0.1:34254")?;
    let stream = TcpStream::from_std(std_stream)?;
    Ok(())
}

Panics

This function panics if thread-local runtime is not set.

The runtime is usually set implicitly when this function is called from a future driven by a tokio runtime, otherwise runtime can be set explicitly with Handle::enter function.

Panics

This function panics if thread-local runtime is not set.

The runtime is usually set implicitly when this function is called from a future driven by a tokio runtime, otherwise runtime can be set explicitly with Handle::enter function.

pub fn local_addr(&self) -> Result<SocketAddr>[src]

This is supported on feature="tcp" only.

Returns the local address that this stream is bound to.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.local_addr()?);

pub fn peer_addr(&self) -> Result<SocketAddr>[src]

This is supported on feature="tcp" only.

Returns the remote address that this stream is connected to.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.peer_addr()?);

pub fn poll_peek(
    &mut self,
    cx: &mut Context,
    buf: &mut [u8]
) -> Poll<Result<usize>>
[src]

This is supported on feature="tcp" only.

Attempts to receive data on the socket, without removing that data from the queue, registering the current task for wakeup if data is not yet available.

Return value

The function returns:

  • Poll::Pending if data is not yet available.
  • Poll::Ready(Ok(n)) if data is available. n is the number of bytes peeked.
  • Poll::Ready(Err(e)) if an error is encountered.

Errors

This function may encounter any standard I/O error except WouldBlock.

Examples

use tokio::io;
use tokio::net::TcpStream;

use futures::future::poll_fn;

#[tokio::main]
async fn main() -> io::Result<()> {
    let mut stream = TcpStream::connect("127.0.0.1:8000").await?;
    let mut buf = [0; 10];

    poll_fn(|cx| {
        stream.poll_peek(cx, &mut buf)
    }).await?;

    Ok(())
}

pub async fn peek<'_, '_>(&'_ mut self, buf: &'_ mut [u8]) -> Result<usize>[src]

This is supported on feature="tcp" only.

Receives data on the socket from the remote address to which it is connected, without removing that data from the queue. On success, returns the number of bytes peeked.

Successive calls return the same data. This is accomplished by passing MSG_PEEK as a flag to the underlying recv system call.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    let mut b1 = [0; 10];
    let mut b2 = [0; 10];

    // Peek at the data
    let n = stream.peek(&mut b1).await?;

    // Read the data
    assert_eq!(n, stream.read(&mut b2[..n]).await?);
    assert_eq!(&b1[..n], &b2[..n]);

    Ok(())
}

pub fn shutdown(&self, how: Shutdown) -> Result<()>[src]

This is supported on feature="tcp" only.

Shuts down the read, write, or both halves of this connection.

This function will cause all pending and future I/O on the specified portions to return immediately with an appropriate value (see the documentation of Shutdown).

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::net::Shutdown;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Shutdown the stream
    stream.shutdown(Shutdown::Write)?;

    Ok(())
}

pub fn nodelay(&self) -> Result<bool>[src]

This is supported on feature="tcp" only.

Gets the value of the TCP_NODELAY option on this socket.

For more information about this option, see set_nodelay.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.nodelay()?);

pub fn set_nodelay(&self, nodelay: bool) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets the value of the TCP_NODELAY option on this socket.

If set, this option disables the Nagle algorithm. This means that segments are always sent as soon as possible, even if there is only a small amount of data. When not set, data is buffered until there is a sufficient amount to send out, thereby avoiding the frequent sending of small packets.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_nodelay(true)?;

pub fn recv_buffer_size(&self) -> Result<usize>[src]

This is supported on feature="tcp" only.

Gets the value of the SO_RCVBUF option on this socket.

For more information about this option, see set_recv_buffer_size.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.recv_buffer_size()?);

pub fn set_recv_buffer_size(&self, size: usize) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets the value of the SO_RCVBUF option on this socket.

Changes the size of the operating system's receive buffer associated with the socket.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_recv_buffer_size(100)?;

pub fn send_buffer_size(&self) -> Result<usize>[src]

This is supported on feature="tcp" only.

Gets the value of the SO_SNDBUF option on this socket.

For more information about this option, see set_send_buffer.

Examples

Returns whether keepalive messages are enabled on this socket, and if so the duration of time between them.

For more information about this option, see set_keepalive.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.send_buffer_size()?);

pub fn set_send_buffer_size(&self, size: usize) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets the value of the SO_SNDBUF option on this socket.

Changes the size of the operating system's send buffer associated with the socket.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_send_buffer_size(100)?;

pub fn keepalive(&self) -> Result<Option<Duration>>[src]

This is supported on feature="tcp" only.

Returns whether keepalive messages are enabled on this socket, and if so the duration of time between them.

For more information about this option, see set_keepalive.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.keepalive()?);

pub fn set_keepalive(&self, keepalive: Option<Duration>) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets whether keepalive messages are enabled to be sent on this socket.

On Unix, this option will set the SO_KEEPALIVE as well as the TCP_KEEPALIVE or TCP_KEEPIDLE option (depending on your platform). On Windows, this will set the SIO_KEEPALIVE_VALS option.

If None is specified then keepalive messages are disabled, otherwise the duration specified will be the time to remain idle before sending a TCP keepalive probe.

Some platforms specify this value in seconds, so sub-second specifications may be omitted.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_keepalive(None)?;

pub fn ttl(&self) -> Result<u32>[src]

This is supported on feature="tcp" only.

Gets the value of the IP_TTL option for this socket.

For more information about this option, see set_ttl.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.ttl()?);

pub fn set_ttl(&self, ttl: u32) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets the value for the IP_TTL option on this socket.

This value sets the time-to-live field that is used in every packet sent from this socket.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_ttl(123)?;

pub fn linger(&self) -> Result<Option<Duration>>[src]

This is supported on feature="tcp" only.

Reads the linger duration for this socket by getting the SO_LINGER option.

For more information about this option, see set_linger.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.linger()?);

pub fn set_linger(&self, dur: Option<Duration>) -> Result<()>[src]

This is supported on feature="tcp" only.

Sets the linger duration of this socket by setting the SO_LINGER option.

This option controls the action taken when a stream has unsent messages and the stream is closed. If SO_LINGER is set, the system shall block the process until it can transmit the data or until the time expires.

If SO_LINGER is not specified, and the stream is closed, the system handles the call in a way that allows the process to continue as quickly as possible.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_linger(None)?;

pub fn split(&mut self) -> (ReadHalf, WriteHalf)[src]

This is supported on feature="tcp" only.

Splits a TcpStream into a read half and a write half, which can be used to read and write the stream concurrently.

See the module level documenation of split for more details.

Trait Implementations

impl AsRawFd for TcpStream[src]

impl<'_> AsRef<TcpStream> for ReadHalf<'_>[src]

impl<'_> AsRef<TcpStream> for WriteHalf<'_>[src]

impl AsyncRead for TcpStream[src]

impl AsyncWrite for TcpStream[src]

impl Debug for TcpStream[src]

impl TryFrom<TcpStream> for TcpStream[src]

type Error = Error

The type returned in the event of a conversion error.

fn try_from(value: TcpStream) -> Result<Self, Self::Error>[src]

Consumes value, returning the mio I/O object.

See PollEvented::into_inner for more details about resource deregistration that happens during the call.

impl TryFrom<TcpStream> for TcpStream[src]

type Error = Error

The type returned in the event of a conversion error.

fn try_from(stream: TcpStream) -> Result<Self, Self::Error>[src]

Consumes stream, returning the tokio I/O object.

This is equivalent to TcpStream::from_std(stream).

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.