1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright (c) 2018 Nuclear Furnace
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#[macro_use]
extern crate futures;
extern crate tokio_timer;

#[cfg(tests)]
extern crate tokio_executor;

use futures::{
    future::Fuse,
    prelude::*,
    sync::mpsc::{unbounded, UnboundedReceiver, UnboundedSender},
};
use std::{
    sync::{
        atomic::{AtomicUsize, Ordering},
        Arc,
    },
    time::Duration,
};
use tokio_timer::{clock::now as clock_now, Delay};

/// Handle to control the count of waiters for the evacuation.
///
/// `Warden` is cloneable.
#[derive(Clone)]
pub struct Warden {
    count: Arc<AtomicUsize>,
    notifier: UnboundedSender<usize>,
}

/// A future for safely "evacuating" a resource that is used by multiple parties.
///
/// `Evacuate` tracks a tripwire, the count of concurrent users, and a evacuation timeout.  Until
/// the tripwire completes, `Evacuate` will always be `Async::NotReady`.  Once the tripwire is
/// complete, a timeout is started, based on a configurable value passed in during creation.
///
/// When the tripwire completes, if the user count is zero, we immediately return `Async::Ready`.
/// Otherwise, we wait until either the user count falls to 0 or our internal timeout fires.
///
/// This allows us to build logic which safely attempts to clear users of a resource during
/// shutdown before timing out and forcefully closing.
pub struct Evacuate<F: Future> {
    count: Arc<AtomicUsize>,
    notifications: UnboundedReceiver<usize>,
    tripwire: Fuse<F>,
    timeout_ms: u64,
    timeout: Delay,
}

impl Warden {
    pub(crate) fn new(count: Arc<AtomicUsize>, notifier: UnboundedSender<usize>) -> Warden {
        Warden { count, notifier }
    }

    pub fn increment(&self) { let _ = self.count.fetch_add(1, Ordering::SeqCst); }

    pub fn decrement(&self) { let _ = self.count.fetch_sub(1, Ordering::SeqCst); }
}

impl<F: Future> Evacuate<F> {
    pub fn new(tripwire: F, timeout_ms: u64) -> (Warden, Evacuate<F>) {
        let (tx, rx) = unbounded();
        let count = Arc::new(AtomicUsize::new(0));

        let warden = Warden::new(count.clone(), tx);
        let evacuate = Evacuate {
            count,
            notifications: rx,
            tripwire: tripwire.fuse(),
            timeout_ms,
            timeout: Delay::new(clock_now()),
        };

        (warden, evacuate)
    }
}

impl<F: Future> Future for Evacuate<F> {
    type Error = ();
    type Item = ();

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        // Drain the notifications queue to make sure we keep getting notified.
        while let Ok(Async::Ready(_)) = self.notifications.poll() {}

        // We have to wait for our tripwire.
        if !self.tripwire.is_done() {
            let _ = try_ready!(self.tripwire.poll().map_err(|_| ()));

            // If we're here, reset our delay based on the timeout.
            self.timeout.reset(clock_now() + Duration::from_millis(self.timeout_ms));
        }

        // We've tripped, so let's see what we're at for count.  If we're at zero, then we're done,
        // otherwise, fall through and see if we've hit our delay yet.
        if self.count.load(Ordering::SeqCst) == 0 {
            // We've tripped and we're at count 0, so we're done.
            return Ok(Async::Ready(()));
        }

        // Our count isn't at zero, but let's see if we've timed out yet.
        self.timeout.poll().map_err(|_| ())
    }
}

#[cfg(test)]
mod tests {
    #[macro_use]
    mod support;
    use self::support::*;

    use super::Evacuate;

    use futures::{
        future::{empty, ok},
        Future,
    };

    #[test]
    fn test_evacuate_stops_at_tripwire() {
        mocked(|_, _| {
            let tripwire = empty::<(), ()>();
            let (_warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            assert_not_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_falls_through_on_tripwire() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (_warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            assert_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_stops_after_tripping_with_clients() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_completes_after_client_count_ping_pong() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.decrement();
            warden.decrement();
            assert_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_delay_before_clients_hit_zero() {
        mocked(|timer, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.decrement();
            assert_not_ready!(evacuate);
            advance(timer, ms(10001));
            assert_ready!(evacuate);
        });
    }

}