
A Quick Primer on TNT

Alexander Fraebel

October 29, 2022

1 Introduction

TNT crate for the Rust programming language that creates simple runtime

validated formal proofs in Number Theory. This crate adapts Typographical

Number Theory from Chapter 8 of Douglas Hofstadter's Gödel, Escher, and

Bach.

The �rst two sections, describing Terms and Formulas, explain how valid

statements of TNT are formed. They mostly can be summarized by the

Backus-Naur Form below. This precisely speci�es Terms, however Formu-

las have additional restrictions that cannot be expressed as a context free

grammar.

<var> ::= { <lowercase_letter> | <var> "’" }
<arith> ::= { "+" | "*" }
<term> ::= { "0" | <var> | "S" <term> |

"(" <term> <arith> <term> ")" }
<quant> ::= { "A" <var> ":" | "E" <var> ":" }
<logical> ::= { "&" | "|" | ">" }
<formula> ::= { <term> "=" <term> | <quant> <formula> |

"~" <formula> |
"[" <formula> <logical> <formula> "]" }

2 Terms

The grammar of TNT starts with Terms. The Term type is an enumer-

able type with �ve variants: Zero, Variable, Successor, Sum, Product. The

variants Zero and Variable are atomic while the others contains Terms. Sim-

ple Terms can be created using the enum's built in constructors. For more

complex Terms is is suggested to use use the Term::try_from() method.

Examples of valid Terms are:

1

SSS0
(f’’+((0*Sg)*a)
SS(S(b+h)*Sb)

The compact way that Terms are written simpli�es their de�nition and

implementation but can make them hard to read. Consequently a .pretty_string()
method is provided that renders them in an easier to read format, spacing

out arithmetic and changing `*` to `Ö`.

SSS0
(f’’ + ((0 × Sg) × a)
SS(S(b + h) × Sb)

3 Formulas

Formulas are well-formed formulas of the TNT language and are represented

by an enum with seven variants: Equality, Universal, Existential, Negation,

And, Or, Implies. The simplest Formula is Equality which contains two

terms, all other variants contain one or more Formulas. The Universal and

Existential variants are quanti�cations that, formally, must contain a Vari-

able and a Formula. However due to limitations of the type system they

instead contain a String (naming a Variable) and a Formula.

For constructing Formulas the Formula::try_from() method is sug-

gested.

Examples of valid Formulas are:

Ac:[Ad:(d+Sc)=(Sd+c)>Ad:(d+SSc)=(Sd+Sc)]
Eb:(b*b)=a
Ab:Ac:[(SSb*c)=a>c=S0]
Ez’:Sz’=0
(SS0*SS0)=SSS0

Notice that some of these Formulas have false or nonsensical interpre-

tations. A Formula type only enforces the property of being well-formed,

validity relies upon the Deduction struct.

To aid in interpretation of Formulas the .to_english() method is pro-

vided which translates the symbols to semi-readable English.

for all c, [for all d, (d + Sc) = (Sd + c)
implies that for all d, (d + SSc) = (Sd + Sc)]

2

there exists b such that (b × b) = a

for all b, for all c, [(SSb × c) = a implies that c = S0]

there exists z’ such that Sz’ = 0

(SS0 × SS0) = SSS0

4 Deductions

Deductions are the centerpiece of the crate as they are required for using

and checking the rules of inference. Internally the Deduction struct keeps

a list of Formulas with some extra information. This list consists of the-

orems that are true within TNT and the set of axioms chosen. Using the

Deduction::peano() creates a Deduction within axioms that correspond

to Peano Arithmetic and thus to standard mathematics.

Making inferences with the Deduction is done through the thirteen meth-

ods provided below. Most of these methods take an index of a previous

theorem as an argument. Methods never modify an existing theorem, they

always create a new one.

All methods return a Result type with an explanation of the error if

necessary. For the type and trait constraints see the full documentation.

.specification(n, var_name, term Eliminates universal quanti�ca-

tion of Variables with the given name and replaces every instance of the

Variable with the Term provided.

.generalization(formula, var_name) Remove every universal quan-

ti�cation of the provided Variable, then change every occurrence of the Vari-

able to the Term provided.

.existence(formula, var_name) Clone the index and add a universal

quanti�cation of the provided variable at the front.

.existence(n, var_name) Add an existential quanti�cation of a Vari-

able with the provided name.

.successor(n) Prepend S to both sides of the equality.

3

.predecessor(n) Remove the �rst S from both sides of the equality.

.interchange_ea(n, var_name, pos) Replace the pos instance of nega-

tion of an existential quanti�cation with the universal quanti�cation of a

negation.

.interchange_ae(n, var_name, pos) Replace the pos instance of uni-

versal quanti�cation of a negation with the negation of an existential quan-

ti�cation with.

.symmetry(n) Switch the sides of the equality.

.transitivity(n1, n2) Create a new theorem that is the the equality

of the left side of the �rst formula with the right side of the second formula.

.supposition(formula) Increases the depth of the Deduction by one

step, creating a supposition block, and adds the provided Formula to the

list.

.implication() Decrease the depth of the Deduction by one step then

checks the previous supposition block and adds a theorem to the list that

the �rst theorem implies the last theorem.

.induction(var_name, base, general) Adds a new theorem that is

induction of the provided Variable on the base case and general case.

4

