A Quick Primer on TNT

Alexander Fraebel

October 29, 2022

1 Introduction

TNT crate for the Rust programming language that creates simple runtime
validated formal proofs in Number Theory. This crate adapts Typographical
Number Theory from Chapter 8 of Douglas Hofstadter’s Gadel, Escher, and
Bach.

The first two sections, describing Terms and Formulas, explain how valid
statements of TNT are formed. They mostly can be summarized by the
Backus-Naur Form below. This precisely specifies Terms, however Formu-
las have additional restrictions that cannot be expressed as a context free
grammar.

<var> ::= { <lowercase letter> | <var> "'" }
<arith> ::= { "+" | "*" }
<term> ::= { "0" | <var> | "S" <term> |
“(" <term> <arith> <term> ")" }
<quant> ::= { "A" <var> ":" | "E" <var> ":" }
<logical> ::= { "&" | "|" | ">" }
<formula> ::= { <term> "=" <term> | <quant> <formula> |
"~" <formula> |

"[" <formula> <logical> <formula> "]" }

2 Terms

The grammar of TNT starts with Terms. The Term type is an enumer-

able type with five variants: Zero, Variable, Successor, Sum, Product. The

variants Zero and Variable are atomic while the others contains Terms. Sim-

ple Terms can be created using the enum’s built in constructors. For more

complex Terms is is suggested to use use the Term: :try from() method.
Examples of valid Terms are:

SSS0O
(f"'+((0*Sg)*a)
SS(S(b+h)*Sb)

The compact way that Terms are written simplifies their definition and
implementation but can make them hard to read. Consequently a .pretty string()
method is provided that renders them in an easier to read format, spacing
out arithmetic and changing “*‘ to ‘x°.

SSSo
(f"" + ((0 x Sg) x a)
SS(S(b + h) x Sb)

3 Formulas

Formulas are well-formed formulas of the TNT language and are represented
by an enum with seven variants: Equality, Universal, Existential, Negation,
And, Or, Implies. The simplest Formula is Equality which contains two
terms, all other variants contain one or more Formulas. The Universal and
Existential variants are quantifications that, formally, must contain a Vari-
able and a Formula. However due to limitations of the type system they
instead contain a String (naming a Variable) and a Formula.

For constructing Formulas the Formula: :try from() method is sug-
gested.

Examples of valid Formulas are:

Ac:[Ad: (d+Sc)=(Sd+c)>Ad: (d+SSc)=(Sd+Sc)]
Eb: (b*b)=a

Ab:Ac: [(SSb*c)=a>c=50]

Ez':S5z'=0

(SS0*SS0)=5S5S0

Notice that some of these Formulas have false or nonsensical interpre-
tations. A Formula type only enforces the property of being well-formed,
validity relies upon the Deduction struct.

To aid in interpretation of Formulas the .to _english() method is pro-
vided which translates the symbols to semi-readable English.

for all ¢, [for all d, (d + Sc) = (Sd + c)
implies that for all d, (d + SSc) = (Sd + Sc)]

there exists b such that (b x b)

Il
Q

for all b, for all c, [(SSb x ¢) a implies that c = S0O]

there exists z' such that Sz’ =0

(SSO x SSO) = SSSO

4 Deductions

Deductions are the centerpiece of the crate as they are required for using
and checking the rules of inference. Internally the Deduction struct keeps
a list of Formulas with some extra information. This list consists of the-
orems that are true within TNT and the set of axioms chosen. Using the
Deduction::peano() creates a Deduction within axioms that correspond
to Peano Arithmetic and thus to standard mathematics.

Making inferences with the Deduction is done through the thirteen meth-
ods provided below. Most of these methods take an index of a previous
theorem as an argument. Methods never modify an existing theorem, they
always create a new one.

All methods return a Result type with an explanation of the error if
necessary. For the type and trait constraints see the full documentation.

.specification(n, var_name, term Eliminates universal quantifica-
tion of Variables with the given name and replaces every instance of the
Variable with the Term provided.

.generalization(formula, var_name) Remove every universal quan-
tification of the provided Variable, then change every occurrence of the Vari-

able to the Term provided.

.existence(formula, var_name) Clone the index and add a universal
quantification of the provided variable at the front.

.existence(n, var_name) Add an existential quantification of a Vari-
able with the provided name.

.successor(n) Prepend S to both sides of the equality.

.predecessor(n) Remove the first S from both sides of the equality.

.interchange_ea(n, var_name, pos) Replace the posinstance of nega-
tion of an existential quantification with the universal quantification of a
negation.

.interchange_ae(n, var_name, pos) Replace the posinstance of uni-
versal quantification of a negation with the negation of an existential quan-
tification with.

.symmetry(n) Switch the sides of the equality.

.transitivity(nl, n2) Create a new theorem that is the the equality
of the left side of the first formula with the right side of the second formula.

.supposition(formula) Increases the depth of the Deduction by one
step, creating a supposition block, and adds the provided Formula to the
list.

.implication() Decrease the depth of the Deduction by one step then
checks the previous supposition block and adds a theorem to the list that
the first theorem implies the last theorem.

.induction(var_name, base, general) Adds a new theorem that is
induction of the provided Variable on the base case and general case.

