Prove That Addition Commutes

0) $\forall a: \forall b:(a+S b)=S(a+b) \quad$ [axiom]
1) $\forall b:(d+S b)=S(d+b) \quad$ [specification of 0 , a replaced by d]
2) $(d+S S c)=S(d+S c) \quad$ [specification of $\mathbf{1}, \mathrm{b}$ replaced by Sc]
3) $\forall b:(S d+S b)=S(S d+b) \quad$ [specification of $\mathbf{0}$, a replaced by Sd]
4) $\quad(S d+S c)=S(S d+c) \quad$ [specification of $\mathbf{3}, \mathbf{b}$ replaced by \mathbf{c}]
5) $\quad S(S d+c)=(S d+S c) \quad$ [symmetry of 4$]$
begin supposition
6) $\forall d:(d+S c)=(S d+c) \quad$ [supposition]
7) $(d+S c)=(S d+c) \quad$ [specification of $\mathbf{6}, \mathbf{d}$ replaced by $\mathbf{d}]$
8) $\quad S(d+S c)=S(S d+c) \quad[$ successor of 7$]$
9) $\quad(d+S S c)=S(S d+c) \quad$ [transitivity of $\mathbf{2}$ and $\mathbf{8}]$
10) $(d+S S c)=(S d+S c) \quad[$ transitivty of 9 and 5$]$
11) $\forall d:(d+S S c)=(S d+S c) \quad$ [generalization of 10]
end supposition
12) $\langle\forall d:(d+S c)=(S d+c) \rightarrow \forall d:(d+S S c)=(S d+S c)\rangle \quad$ [implication]
13) $\forall c:\langle\forall d:(d+S c)=(S d+c) \rightarrow \forall d:(d+S S c)=(S d+S c)\rangle \quad$ [generalization of 12]
14) $(d+S 0)=S(d+0) \quad$ [specification of $\mathbf{1}, \mathbf{b}$ replaced by 0]
15) $\forall a:(a+0)=a \quad$ [axiom]
16) $\quad(d+0)=d \quad$ [specification of $\mathbf{1 5}$, a replaced by $\mathbf{d}]$
17) $S(d+0)=S d \quad$ [successor of 16]
18) $(d+S 0)=S d \quad$ [transitivity of 14 and 17$]$
19) $\quad(S d+0)=S d \quad$ [specification of $\mathbf{1 5}$, a replaced by Sd$]$
20) $S d=(S d+0) \quad$ [symmetry of 19]
21) $(d+S 0)=(S d+0) \quad$ [transitivity of $\mathbf{1 8}$ and 20]
22) $\forall d:(d+S 0)=(S d+0) \quad$ [generalization of 21]
23) $\forall c: \forall d:(d+S c)=(S d+c) \quad$ [induction of \mathbf{c} on 22 and 13]
24) $\forall b:(c+S b)=S(c+b) \quad[$ specification of $\mathbf{0}$, a replaced by \mathbf{c}]
25) $\quad(c+S d)=S(c+d) \quad$ [specification of 24, b replaced by d]
26) $\forall b:(d+S b)=S(d+b) \quad$ [specification of $\mathbf{0}$, a replaced by \mathbf{d}]
27) $(d+S c)=S(d+c) \quad$ [specification of $\mathbf{2 6}, \mathbf{b}$ replaced by $\mathbf{c}]$
28) $\quad S(d+c)=(d+S c) \quad$ [symmetry of 27]
29) $\forall d:(d+S c)=(S d+c) \quad$ [specification of 23 , c replaced by c]
30) $(d+S c)=(S d+c) \quad[$ specification of $29, \mathbf{d}$ replaced by d]
begin supposition
31) $\forall c:(c+d)=(d+c) \quad$ [supposition]
32) $\quad(c+d)=(d+c) \quad$ [specificationf of 31, \mathbf{c} replaced by c]
33) $\quad S(c+d)=S(d+c) \quad$ [successor of 32]
34) $\quad(c+S d)=S(d+c) \quad$ [transitivity of 25 and 33]
35) $\quad(c+S d)=(d+S c) \quad$ [transitivity of $\mathbf{3 4}$ and 28]
36) $(c+S d)=(S d+c) \quad$ [transitivity of $\mathbf{3 5}$ and 30]
37) $\forall c:(c+S d)=(S d+c) \quad$ [generalization of 36]
end supposition
38) $\langle\forall c:(c+d)=(d+c) \rightarrow \forall c:(c+S d)=(S d+c)\rangle \quad$ [implication]
39) $\forall d:\langle\forall c:(c+d)=(d+c) \rightarrow \forall c:(c+S d)=(S d+c)\rangle \quad$ [generalization of 38]
40) $(c+0)=c \quad[$ specification of 15 , a replaced by $\mathbf{c}]$
41) $\forall b:(0+S b)=S(0+b) \quad$ [specification of $\mathbf{0}$, a replaced by $\mathbf{0}$]
42) $(0+S b)=S(0+b) \quad$ [specification of 41. b replaced by b]
begin supposition
43) $(0+b)=b \quad$ [supposition]
44) $S(0+b)=S b \quad$ [successor of 43]
45) $(0+S b)=S b \quad[$ transitivity of 42 and 44]
end supposition
46) $\langle(0+b)=b \rightarrow(0+S b)=S b\rangle \quad$ [implication]
47) $\forall b:\langle(0+b)=b \rightarrow(0+S b)=S b\rangle \quad$ [generalization of 46]
48) $(0+0)=0 \quad$ [specification of $\mathbf{1 5}$, a replaced by $\mathbf{0}$]
49) $\forall b:(0+b)=b \quad$ [induction of \mathbf{b} on $\mathbf{4 8}$ and 47]
50) $(0+c)=c \quad$ [specification of $49, \mathbf{b}$ replaced by \mathbf{c}]
51) $c=(0+c) \quad$ [symmetry of 50]
52) $\quad(c+0)=(0+c) \quad$ [transitivity of $\mathbf{4 0}$ and 51]
53) $\forall c:(c+0)=(0+c) \quad$ [generalization of 52]
54) $\forall d: \forall c:(c+d)=(d+c) \quad$ [induction of \mathbf{d} on 53 and 39]
