1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
//! # System Control
//!
//! The SYSCTL peripheral controls clocks and power.
//!
//! The TM4C123x can be clocked from the Main Oscillator or the PLL, through a
//! divider. The Main Oscillator can be either the internal 16 MHz precision
//! oscillator, a 4 MHz derivation of the same, or an external crystal.
//!
//! SYSCTL includes the following registers:
//!
//! * Device ID (class, major, minor, family, package, temperature range, )
//! * Brown-out reset control
//! * Brown-out/PLL interrupt control
//! * Reset cause
//! * Run-time clock configuration
//! * GPIO high-performance bus control
//! * System Properties
//! * Registers to indicate whether peripherals are present
//! * Registers to reset peripherals
//! * Registers to enable/disable clocking of peripherals
//!
//! See the LM4F120 datasheet, page 228 for a full list.

use cortex_m::asm::nop;
use crate::bb;
use crate::time::{Hertz, U32Ext};
use tm4c123x;

/// Constrained SYSCTL peripheral.
pub struct Sysctl {
    /// Power control methods will require `&mut this.power_control` to
    /// prevent them from running concurrently.
    pub power_control: PowerControl,
    /// Clock configuration will consume this and give you `Clocks`.
    pub clock_setup: ClockSetup,
}

/// Used to gate access to the run-time power control features of the chip.
pub struct PowerControl {
    _0: (),
}

/// Used to configure the clock generators.
pub struct ClockSetup {
    /// The system oscillator configuration
    pub oscillator: Oscillator,
    // Make this type uncreatable
    _0: (),
}

/// Selects the system oscillator source
#[derive(Clone, Copy)]
pub enum Oscillator {
    /// Use the main oscillator (with the given crystal), into the PLL or a clock divider
    Main(CrystalFrequency, SystemClock),
    /// Use the 16 MHz precision internal oscillator, into the PLL or a clock divider
    PrecisionInternal(SystemClock),
    /// Use the 16 MHz precision internal oscillator, divided down to 4 MHz
    /// and then divided down again by the given value.
    PrecisionInternalDiv4(Divider),
    /// Use the 30 kHz internal oscillator, divided by the given value.
    LowFrequencyInternal(Divider),
}

/// Selects the source for the system clock
#[derive(Clone, Copy)]
pub enum SystemClock {
    /// Clock the system direct from the system oscillator
    UseOscillator(Divider),
    /// Clock the system from the PLL (which is driven by the system
    /// oscillator), divided down from 400MHz to the given frequency.
    UsePll(PllOutputFrequency),
}

/// Selects which crystal is fitted to the XOSC pins.
#[derive(Clone, Copy)]
pub enum CrystalFrequency {
    /// 4 MHz
    _4mhz,
    /// 4.096 MHz
    _4_09mhz,
    /// 4.9152 MHz
    _4_91mhz,
    /// 5 MHz
    _5mhz,
    /// 5.12 MHz
    _5_12mhz,
    /// 6 MHz
    _6mhz,
    /// 6.144 MHz
    _6_14mhz,
    /// 7.3728 MHz
    _7_37mhz,
    /// 8 MHz
    _8mhz,
    /// 8.192 MHz
    _8_19mhz,
    /// 10 MHz
    _10mhz,
    /// 12 MHz
    _12mhz,
    /// 12.288 MHz
    _12_2mhz,
    /// 13.56 MHz
    _13_5mhz,
    /// 14.31818 MHz
    _14_3mhz,
    /// 16 MHz
    _16mhz,
    /// 16.384 MHz
    _16_3mhz,
    /// 18.0 MHz (USB)
    _18mhz,
    /// 20.0 MHz (USB)
    _20mhz,
    /// 24.0 MHz (USB)
    _24mhz,
    /// 25.0 MHz (USB)
    _25mhz,
}

/// Selects what to divide the PLL's 400MHz down to.
#[derive(Clone, Copy)]
pub enum PllOutputFrequency {
    /// 80.00 MHz
    _80_00mhz = 0,
    /// 66.67 MHz
    _66_67mhz = 2,
    /// 50 MHz
    _50_00mhz = 3,
    /// 40 MHz
    _40_00mhz = 4,
    /// 33.33 MHz
    _33_33mhz = 5,
    /// 28.57 MHz
    _28_57mhz = 6,
    /// 25 MHz
    _25mhz = 7,
    /// 22.22 MHz
    _22_22mhz = 8,
    /// 20 MHz
    _20mhz = 9,
    /// 18.18 MHz
    _18_18mhz = 10,
    /// 16.67 MHz
    _16_67mhz = 11,
    /// 15.38 MHz
    _15_38mhz = 12,
    /// 14.29 MHz
    _14_29mhz = 13,
    /// 13.33 MHz
    _13_33mhz = 14,
    /// 12.5 MHz
    _12_5mhz = 15,
}

/// Selects how much to divide the system oscillator down.
#[derive(Clone, Copy)]
pub enum Divider {
    /// Divide by 1
    _1 = 1,
    /// Divide by 2
    _2 = 2,
    /// Divide by 3
    _3 = 3,
    /// Divide by 4
    _4 = 4,
    /// Divide by 5
    _5 = 5,
    /// Divide by 6
    _6 = 6,
    /// Divide by 7
    _7 = 7,
    /// Divide by 8
    _8 = 8,
    /// Divide by 9
    _9 = 9,
    /// Divide by 10
    _10 = 10,
    /// Divide by 11
    _11 = 11,
    /// Divide by 12
    _12 = 12,
    /// Divide by 13
    _13 = 13,
    /// Divide by 14
    _14 = 14,
    /// Divide by 15
    _15 = 15,
    /// Divide by 16
    _16 = 16,
}

/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
#[derive(Clone, Copy)]
pub struct Clocks {
    /// System oscillator clock speed
    pub osc: Hertz,
    /// System clock speed
    pub sysclk: Hertz,
}

/// List of peripherals that can be enabled or disabled
#[derive(Copy, Clone)]
pub enum Domain {
    /// Watchdog 1
    Watchdog1,
    /// Watchdog 0
    Watchdog0,
    /// 32/16-bit Timer 5
    Timer5,
    /// 32/16-bit Timer 4
    Timer4,
    /// 32/16-bit Timer 3
    Timer3,
    /// 32/16-bit Timer 2
    Timer2,
    /// 32/16-bit Timer 1
    Timer1,
    /// 32/16-bit Timer 0
    Timer0,
    /// GPIO F
    GpioF,
    /// GPIO E
    GpioE,
    /// GPIO D
    GpioD,
    /// GPIO C
    GpioC,
    /// GPIO B
    GpioB,
    /// GPIO A
    GpioA,
    /// µDMA
    MicroDma,
    /// Hibernation
    Hibernation,
    /// UART 7
    Uart7,
    /// UART 6
    Uart6,
    /// UART 5
    Uart5,
    /// UART 4
    Uart4,
    /// UART 3
    Uart3,
    /// UART 2
    Uart2,
    /// UART 1
    Uart1,
    /// UART 0
    Uart0,
    /// SSI 3
    Ssi3,
    /// SSI 2
    Ssi2,
    /// SSI 1
    Ssi1,
    /// SSI 0
    Ssi0,
    /// I2C 3
    I2c3,
    /// I2C 2
    I2c2,
    /// I2C 1
    I2c1,
    /// I2C 0
    I2c0,
    /// USB
    Usb,
    /// CAN
    Can,
    /// ADC 1
    Adc1,
    /// ADC 0
    Adc0,
    /// Analog Comparator
    AnalogComparator,
    /// EEPROM
    Eeprom,
    /// 64/32-bit Timer 5
    WideTimer5,
    /// 64/32-bit Timer 4
    WideTimer4,
    /// 64/32-bit Timer 3
    WideTimer3,
    /// 64/32-bit Timer 2
    WideTimer2,
    /// 64/32-bit Timer 1
    WideTimer1,
    /// 64/32-bit Timer 0
    WideTimer0,
    /// PWM0
    Pwm0,
    /// PWM1
    Pwm1,
}

#[derive(Copy, Clone)]
/// Select in which mode the peripheral should be affected
pub enum RunMode {
    /// Run mode
    Run,
    /// Sleep mode (i.e. WFI is being executed)
    Sleep,
    /// Deep-Sleep mode (i.e. WFI is being executed with SLEEP DEEP bit set)
    DeepSleep,
}

#[derive(Copy, Clone)]
/// Select whether the peripheral should be on or off
pub enum PowerState {
    /// Turn peripheral clocks/power off
    Off,
    /// Turn peripheral clocks/power on
    On,
}

/// Reset a peripheral
pub fn reset(_lock: &PowerControl, pd: Domain) {
    // We use bit-banding to make an atomic write, so this is safe
    let p = unsafe { &*tm4c123x::SYSCTL::ptr() };
    match pd {
        Domain::Watchdog1 => unsafe {
            bb::toggle_bit(&p.srwd, 1);
            bb::spin_bit(&p.prwd, 1);
        },
        Domain::Watchdog0 => unsafe {
            bb::toggle_bit(&p.srwd, 0);
            bb::spin_bit(&p.prwd, 0);
        },
        Domain::Timer5 => unsafe {
            bb::toggle_bit(&p.srtimer, 5);
            bb::spin_bit(&p.prtimer, 5);
        },
        Domain::Timer4 => unsafe {
            bb::toggle_bit(&p.srtimer, 4);
            bb::spin_bit(&p.prtimer, 4);
        },
        Domain::Timer3 => unsafe {
            bb::toggle_bit(&p.srtimer, 3);
            bb::spin_bit(&p.prtimer, 3);
        },
        Domain::Timer2 => unsafe {
            bb::toggle_bit(&p.srtimer, 2);
            bb::spin_bit(&p.prtimer, 2);
        },
        Domain::Timer1 => unsafe {
            bb::toggle_bit(&p.srtimer, 1);
            bb::spin_bit(&p.prtimer, 1);
        },
        Domain::Timer0 => unsafe {
            bb::toggle_bit(&p.srtimer, 0);
            bb::spin_bit(&p.prtimer, 0);
        },
        Domain::GpioF => unsafe {
            bb::toggle_bit(&p.srgpio, 5);
            bb::spin_bit(&p.prgpio, 5);
        },
        Domain::GpioE => unsafe {
            bb::toggle_bit(&p.srgpio, 4);
            bb::spin_bit(&p.prgpio, 4);
        },
        Domain::GpioD => unsafe {
            bb::toggle_bit(&p.srgpio, 3);
            bb::spin_bit(&p.prgpio, 3);
        },
        Domain::GpioC => unsafe {
            bb::toggle_bit(&p.srgpio, 2);
            bb::spin_bit(&p.prgpio, 2);
        },
        Domain::GpioB => unsafe {
            bb::toggle_bit(&p.srgpio, 1);
            bb::spin_bit(&p.prgpio, 1);
        },
        Domain::GpioA => unsafe {
            bb::toggle_bit(&p.srgpio, 0);
            bb::spin_bit(&p.prgpio, 0);
        },
        Domain::MicroDma => unsafe {
            bb::toggle_bit(&p.srdma, 0);
            bb::spin_bit(&p.prdma, 0);
        },
        Domain::Hibernation => unsafe {
            bb::toggle_bit(&p.srhib, 0);
            bb::spin_bit(&p.prhib, 0);
        },
        Domain::Uart7 => unsafe {
            bb::toggle_bit(&p.sruart, 7);
            bb::spin_bit(&p.pruart, 7);
        },
        Domain::Uart6 => unsafe {
            bb::toggle_bit(&p.sruart, 6);
            bb::spin_bit(&p.pruart, 6);
        },
        Domain::Uart5 => unsafe {
            bb::toggle_bit(&p.sruart, 5);
            bb::spin_bit(&p.pruart, 5);
        },
        Domain::Uart4 => unsafe {
            bb::toggle_bit(&p.sruart, 4);
            bb::spin_bit(&p.pruart, 4);
        },
        Domain::Uart3 => unsafe {
            bb::toggle_bit(&p.sruart, 3);
            bb::spin_bit(&p.pruart, 3);
        },
        Domain::Uart2 => unsafe {
            bb::toggle_bit(&p.sruart, 2);
            bb::spin_bit(&p.pruart, 2);
        },
        Domain::Uart1 => unsafe {
            bb::toggle_bit(&p.sruart, 1);
            bb::spin_bit(&p.pruart, 1);
        },
        Domain::Uart0 => unsafe {
            bb::toggle_bit(&p.sruart, 0);
            bb::spin_bit(&p.pruart, 0);
        },
        Domain::Ssi3 => unsafe {
            bb::toggle_bit(&p.srssi, 3);
            bb::spin_bit(&p.prssi, 3);
        },
        Domain::Ssi2 => unsafe {
            bb::toggle_bit(&p.srssi, 2);
            bb::spin_bit(&p.prssi, 2);
        },
        Domain::Ssi1 => unsafe {
            bb::toggle_bit(&p.srssi, 1);
            bb::spin_bit(&p.prssi, 1);
        },
        Domain::Ssi0 => unsafe {
            bb::toggle_bit(&p.srssi, 0);
            bb::spin_bit(&p.prssi, 0);
        },
        Domain::I2c3 => unsafe {
            bb::toggle_bit(&p.sri2c, 3);
            bb::spin_bit(&p.pri2c, 3);
        },
        Domain::I2c2 => unsafe {
            bb::toggle_bit(&p.sri2c, 2);
            bb::spin_bit(&p.pri2c, 2);
        },
        Domain::I2c1 => unsafe {
            bb::toggle_bit(&p.sri2c, 1);
            bb::spin_bit(&p.pri2c, 1);
        },
        Domain::I2c0 => unsafe {
            bb::toggle_bit(&p.sri2c, 0);
            bb::spin_bit(&p.pri2c, 0);
        },
        Domain::Usb => unsafe {
            bb::toggle_bit(&p.srusb, 0);
            bb::spin_bit(&p.prusb, 0);
        },
        Domain::Can => unsafe {
            bb::toggle_bit(&p.srcan, 0);
            bb::spin_bit(&p.prcan, 0);
        },
        Domain::Adc1 => unsafe {
            bb::toggle_bit(&p.sradc, 1);
            bb::spin_bit(&p.pradc, 1);
        },
        Domain::Adc0 => unsafe {
            bb::toggle_bit(&p.sradc, 0);
            bb::spin_bit(&p.pradc, 0);
        },
        Domain::AnalogComparator => unsafe {
            bb::toggle_bit(&p.sracmp, 0);
            bb::spin_bit(&p.pracmp, 0);
        },
        Domain::Eeprom => unsafe {
            bb::toggle_bit(&p.sreeprom, 0);
            bb::spin_bit(&p.preeprom, 0);
        },
        Domain::WideTimer5 => unsafe {
            bb::toggle_bit(&p.srwtimer, 5);
            bb::spin_bit(&p.prwtimer, 5);
        },
        Domain::WideTimer4 => unsafe {
            bb::toggle_bit(&p.srwtimer, 4);
            bb::spin_bit(&p.prwtimer, 4);
        },
        Domain::WideTimer3 => unsafe {
            bb::toggle_bit(&p.srwtimer, 3);
            bb::spin_bit(&p.prwtimer, 3);
        },
        Domain::WideTimer2 => unsafe {
            bb::toggle_bit(&p.srwtimer, 2);
            bb::spin_bit(&p.prwtimer, 2);
        },
        Domain::WideTimer1 => unsafe {
            bb::toggle_bit(&p.srwtimer, 1);
            bb::spin_bit(&p.prwtimer, 1);
        },
        Domain::WideTimer0 => unsafe {
            bb::toggle_bit(&p.srwtimer, 0);
            bb::spin_bit(&p.prwtimer, 0);
        },
        Domain::Pwm0 => unsafe {
            bb::toggle_bit(&p.srpwm, 0);
            bb::spin_bit(&p.prpwm, 0);
        },
        Domain::Pwm1 => unsafe {
            bb::toggle_bit(&p.srpwm, 1);
            bb::spin_bit(&p.prpwm, 1);
        },
    }
}

/// Activate or De-Activate clocks and power to the given peripheral in the
/// given run mode.
///
/// We take a reference to PowerControl as a permission check. We don't need
/// an &mut reference as we use atomic writes in the bit-banding area so it's
/// interrupt safe.
pub fn control_power(_lock: &PowerControl, pd: Domain, run_mode: RunMode, state: PowerState) {
    let on = match state {
        PowerState::On => true,
        PowerState::Off => false,
    };
    match run_mode {
        RunMode::Run => control_run_power(pd, on),
        RunMode::Sleep => control_sleep_power(pd, on),
        RunMode::DeepSleep => control_deep_sleep_power(pd, on),
    }
    // Section 5.2.6 - "There must be a delay of 3 system clocks after a
    // peripheral module clock is enabled in the RCGC register before any
    // module registers are accessed."
    nop();
    nop();
    nop();
}

fn control_run_power(pd: Domain, on: bool) {
    // We use bit-banding to make an atomic write, so this is safe
    let p = unsafe { &*tm4c123x::SYSCTL::ptr() };
    match pd {
        Domain::Watchdog1 => unsafe { bb::change_bit(&p.rcgcwd, 1, on) },
        Domain::Watchdog0 => unsafe { bb::change_bit(&p.rcgcwd, 0, on) },
        Domain::Timer5 => unsafe { bb::change_bit(&p.rcgctimer, 5, on) },
        Domain::Timer4 => unsafe { bb::change_bit(&p.rcgctimer, 4, on) },
        Domain::Timer3 => unsafe { bb::change_bit(&p.rcgctimer, 3, on) },
        Domain::Timer2 => unsafe { bb::change_bit(&p.rcgctimer, 2, on) },
        Domain::Timer1 => unsafe { bb::change_bit(&p.rcgctimer, 1, on) },
        Domain::Timer0 => unsafe { bb::change_bit(&p.rcgctimer, 0, on) },
        Domain::GpioF => unsafe { bb::change_bit(&p.rcgcgpio, 5, on) },
        Domain::GpioE => unsafe { bb::change_bit(&p.rcgcgpio, 4, on) },
        Domain::GpioD => unsafe { bb::change_bit(&p.rcgcgpio, 3, on) },
        Domain::GpioC => unsafe { bb::change_bit(&p.rcgcgpio, 2, on) },
        Domain::GpioB => unsafe { bb::change_bit(&p.rcgcgpio, 1, on) },
        Domain::GpioA => unsafe { bb::change_bit(&p.rcgcgpio, 0, on) },
        Domain::MicroDma => unsafe { bb::change_bit(&p.rcgcdma, 0, on) },
        Domain::Hibernation => unsafe { bb::change_bit(&p.rcgchib, 0, on) },
        Domain::Uart7 => unsafe { bb::change_bit(&p.rcgcuart, 7, on) },
        Domain::Uart6 => unsafe { bb::change_bit(&p.rcgcuart, 6, on) },
        Domain::Uart5 => unsafe { bb::change_bit(&p.rcgcuart, 5, on) },
        Domain::Uart4 => unsafe { bb::change_bit(&p.rcgcuart, 4, on) },
        Domain::Uart3 => unsafe { bb::change_bit(&p.rcgcuart, 3, on) },
        Domain::Uart2 => unsafe { bb::change_bit(&p.rcgcuart, 2, on) },
        Domain::Uart1 => unsafe { bb::change_bit(&p.rcgcuart, 1, on) },
        Domain::Uart0 => unsafe { bb::change_bit(&p.rcgcuart, 0, on) },
        Domain::Ssi3 => unsafe { bb::change_bit(&p.rcgcssi, 3, on) },
        Domain::Ssi2 => unsafe { bb::change_bit(&p.rcgcssi, 2, on) },
        Domain::Ssi1 => unsafe { bb::change_bit(&p.rcgcssi, 1, on) },
        Domain::Ssi0 => unsafe { bb::change_bit(&p.rcgcssi, 0, on) },
        Domain::I2c3 => unsafe { bb::change_bit(&p.rcgci2c, 3, on) },
        Domain::I2c2 => unsafe { bb::change_bit(&p.rcgci2c, 2, on) },
        Domain::I2c1 => unsafe { bb::change_bit(&p.rcgci2c, 1, on) },
        Domain::I2c0 => unsafe { bb::change_bit(&p.rcgci2c, 0, on) },
        Domain::Usb => unsafe { bb::change_bit(&p.rcgcusb, 0, on) },
        Domain::Can => unsafe { bb::change_bit(&p.rcgccan, 0, on) },
        Domain::Adc1 => unsafe { bb::change_bit(&p.rcgcadc, 1, on) },
        Domain::Adc0 => unsafe { bb::change_bit(&p.rcgcadc, 0, on) },
        Domain::AnalogComparator => unsafe { bb::change_bit(&p.rcgcacmp, 0, on) },
        Domain::Eeprom => unsafe { bb::change_bit(&p.rcgceeprom, 0, on) },
        Domain::WideTimer5 => unsafe { bb::change_bit(&p.rcgcwtimer, 5, on) },
        Domain::WideTimer4 => unsafe { bb::change_bit(&p.rcgcwtimer, 4, on) },
        Domain::WideTimer3 => unsafe { bb::change_bit(&p.rcgcwtimer, 3, on) },
        Domain::WideTimer2 => unsafe { bb::change_bit(&p.rcgcwtimer, 2, on) },
        Domain::WideTimer1 => unsafe { bb::change_bit(&p.rcgcwtimer, 1, on) },
        Domain::WideTimer0 => unsafe { bb::change_bit(&p.rcgcwtimer, 0, on) },
        Domain::Pwm0 => unsafe { bb::change_bit(&p.rcgcpwm, 0, on) },
        Domain::Pwm1 => unsafe { bb::change_bit(&p.rcgcpwm, 1, on) },
    }
}

fn control_sleep_power(pd: Domain, on: bool) {
    // We use bit-banding to make an atomic write, so this is safe
    let p = unsafe { &*tm4c123x::SYSCTL::ptr() };
    match pd {
        Domain::Watchdog1 => unsafe { bb::change_bit(&p.scgcwd, 1, on) },
        Domain::Watchdog0 => unsafe { bb::change_bit(&p.scgcwd, 0, on) },
        Domain::Timer5 => unsafe { bb::change_bit(&p.scgctimer, 5, on) },
        Domain::Timer4 => unsafe { bb::change_bit(&p.scgctimer, 4, on) },
        Domain::Timer3 => unsafe { bb::change_bit(&p.scgctimer, 3, on) },
        Domain::Timer2 => unsafe { bb::change_bit(&p.scgctimer, 2, on) },
        Domain::Timer1 => unsafe { bb::change_bit(&p.scgctimer, 1, on) },
        Domain::Timer0 => unsafe { bb::change_bit(&p.scgctimer, 0, on) },
        Domain::GpioF => unsafe { bb::change_bit(&p.scgcgpio, 5, on) },
        Domain::GpioE => unsafe { bb::change_bit(&p.scgcgpio, 4, on) },
        Domain::GpioD => unsafe { bb::change_bit(&p.scgcgpio, 3, on) },
        Domain::GpioC => unsafe { bb::change_bit(&p.scgcgpio, 2, on) },
        Domain::GpioB => unsafe { bb::change_bit(&p.scgcgpio, 1, on) },
        Domain::GpioA => unsafe { bb::change_bit(&p.scgcgpio, 0, on) },
        Domain::MicroDma => unsafe { bb::change_bit(&p.scgcdma, 0, on) },
        Domain::Hibernation => unsafe { bb::change_bit(&p.scgchib, 0, on) },
        Domain::Uart7 => unsafe { bb::change_bit(&p.scgcuart, 7, on) },
        Domain::Uart6 => unsafe { bb::change_bit(&p.scgcuart, 6, on) },
        Domain::Uart5 => unsafe { bb::change_bit(&p.scgcuart, 5, on) },
        Domain::Uart4 => unsafe { bb::change_bit(&p.scgcuart, 4, on) },
        Domain::Uart3 => unsafe { bb::change_bit(&p.scgcuart, 3, on) },
        Domain::Uart2 => unsafe { bb::change_bit(&p.scgcuart, 2, on) },
        Domain::Uart1 => unsafe { bb::change_bit(&p.scgcuart, 1, on) },
        Domain::Uart0 => unsafe { bb::change_bit(&p.scgcuart, 0, on) },
        Domain::Ssi3 => unsafe { bb::change_bit(&p.scgcssi, 3, on) },
        Domain::Ssi2 => unsafe { bb::change_bit(&p.scgcssi, 2, on) },
        Domain::Ssi1 => unsafe { bb::change_bit(&p.scgcssi, 1, on) },
        Domain::Ssi0 => unsafe { bb::change_bit(&p.scgcssi, 0, on) },
        Domain::I2c3 => unsafe { bb::change_bit(&p.scgci2c, 3, on) },
        Domain::I2c2 => unsafe { bb::change_bit(&p.scgci2c, 2, on) },
        Domain::I2c1 => unsafe { bb::change_bit(&p.scgci2c, 1, on) },
        Domain::I2c0 => unsafe { bb::change_bit(&p.scgci2c, 0, on) },
        Domain::Usb => unsafe { bb::change_bit(&p.scgcusb, 0, on) },
        Domain::Can => unsafe { bb::change_bit(&p.scgccan, 0, on) },
        Domain::Adc1 => unsafe { bb::change_bit(&p.scgcadc, 1, on) },
        Domain::Adc0 => unsafe { bb::change_bit(&p.scgcadc, 0, on) },
        Domain::AnalogComparator => unsafe { bb::change_bit(&p.scgcacmp, 0, on) },
        Domain::Eeprom => unsafe { bb::change_bit(&p.scgceeprom, 0, on) },
        Domain::WideTimer5 => unsafe { bb::change_bit(&p.scgcwtimer, 5, on) },
        Domain::WideTimer4 => unsafe { bb::change_bit(&p.scgcwtimer, 4, on) },
        Domain::WideTimer3 => unsafe { bb::change_bit(&p.scgcwtimer, 3, on) },
        Domain::WideTimer2 => unsafe { bb::change_bit(&p.scgcwtimer, 2, on) },
        Domain::WideTimer1 => unsafe { bb::change_bit(&p.scgcwtimer, 1, on) },
        Domain::WideTimer0 => unsafe { bb::change_bit(&p.scgcwtimer, 0, on) },
        Domain::Pwm0 => unsafe { bb::change_bit(&p.scgcpwm, 0, on) },
        Domain::Pwm1 => unsafe { bb::change_bit(&p.scgcpwm, 1, on) },
    }
}

fn control_deep_sleep_power(pd: Domain, on: bool) {
    // We use bit-banding to make an atomic write, so this is safe
    let p = unsafe { &*tm4c123x::SYSCTL::ptr() };
    match pd {
        Domain::Watchdog1 => unsafe { bb::change_bit(&p.dcgcwd, 1, on) },
        Domain::Watchdog0 => unsafe { bb::change_bit(&p.dcgcwd, 0, on) },
        Domain::Timer5 => unsafe { bb::change_bit(&p.dcgctimer, 5, on) },
        Domain::Timer4 => unsafe { bb::change_bit(&p.dcgctimer, 4, on) },
        Domain::Timer3 => unsafe { bb::change_bit(&p.dcgctimer, 3, on) },
        Domain::Timer2 => unsafe { bb::change_bit(&p.dcgctimer, 2, on) },
        Domain::Timer1 => unsafe { bb::change_bit(&p.dcgctimer, 1, on) },
        Domain::Timer0 => unsafe { bb::change_bit(&p.dcgctimer, 0, on) },
        Domain::GpioF => unsafe { bb::change_bit(&p.dcgcgpio, 5, on) },
        Domain::GpioE => unsafe { bb::change_bit(&p.dcgcgpio, 4, on) },
        Domain::GpioD => unsafe { bb::change_bit(&p.dcgcgpio, 3, on) },
        Domain::GpioC => unsafe { bb::change_bit(&p.dcgcgpio, 2, on) },
        Domain::GpioB => unsafe { bb::change_bit(&p.dcgcgpio, 1, on) },
        Domain::GpioA => unsafe { bb::change_bit(&p.dcgcgpio, 0, on) },
        Domain::MicroDma => unsafe { bb::change_bit(&p.dcgcdma, 0, on) },
        Domain::Hibernation => unsafe { bb::change_bit(&p.dcgchib, 0, on) },
        Domain::Uart7 => unsafe { bb::change_bit(&p.dcgcuart, 7, on) },
        Domain::Uart6 => unsafe { bb::change_bit(&p.dcgcuart, 6, on) },
        Domain::Uart5 => unsafe { bb::change_bit(&p.dcgcuart, 5, on) },
        Domain::Uart4 => unsafe { bb::change_bit(&p.dcgcuart, 4, on) },
        Domain::Uart3 => unsafe { bb::change_bit(&p.dcgcuart, 3, on) },
        Domain::Uart2 => unsafe { bb::change_bit(&p.dcgcuart, 2, on) },
        Domain::Uart1 => unsafe { bb::change_bit(&p.dcgcuart, 1, on) },
        Domain::Uart0 => unsafe { bb::change_bit(&p.dcgcuart, 0, on) },
        Domain::Ssi3 => unsafe { bb::change_bit(&p.dcgcssi, 3, on) },
        Domain::Ssi2 => unsafe { bb::change_bit(&p.dcgcssi, 2, on) },
        Domain::Ssi1 => unsafe { bb::change_bit(&p.dcgcssi, 1, on) },
        Domain::Ssi0 => unsafe { bb::change_bit(&p.dcgcssi, 0, on) },
        Domain::I2c3 => unsafe { bb::change_bit(&p.dcgci2c, 3, on) },
        Domain::I2c2 => unsafe { bb::change_bit(&p.dcgci2c, 2, on) },
        Domain::I2c1 => unsafe { bb::change_bit(&p.dcgci2c, 1, on) },
        Domain::I2c0 => unsafe { bb::change_bit(&p.dcgci2c, 0, on) },
        Domain::Usb => unsafe { bb::change_bit(&p.dcgcusb, 0, on) },
        Domain::Can => unsafe { bb::change_bit(&p.dcgccan, 0, on) },
        Domain::Adc1 => unsafe { bb::change_bit(&p.dcgcadc, 1, on) },
        Domain::Adc0 => unsafe { bb::change_bit(&p.dcgcadc, 0, on) },
        Domain::AnalogComparator => unsafe { bb::change_bit(&p.dcgcacmp, 0, on) },
        Domain::Eeprom => unsafe { bb::change_bit(&p.dcgceeprom, 0, on) },
        Domain::WideTimer5 => unsafe { bb::change_bit(&p.dcgcwtimer, 5, on) },
        Domain::WideTimer4 => unsafe { bb::change_bit(&p.dcgcwtimer, 4, on) },
        Domain::WideTimer3 => unsafe { bb::change_bit(&p.dcgcwtimer, 3, on) },
        Domain::WideTimer2 => unsafe { bb::change_bit(&p.dcgcwtimer, 2, on) },
        Domain::WideTimer1 => unsafe { bb::change_bit(&p.dcgcwtimer, 1, on) },
        Domain::WideTimer0 => unsafe { bb::change_bit(&p.dcgcwtimer, 0, on) },
        Domain::Pwm0 => unsafe { bb::change_bit(&p.dcgcpwm, 0, on) },
        Domain::Pwm1 => unsafe { bb::change_bit(&p.dcgcpwm, 1, on) },
    }
}

/// Extension trait that constrains the `SYSCTL` peripheral
pub trait SysctlExt {
    /// Constrains the `SYSCTL` peripheral so it plays nicely with the other abstractions
    fn constrain(self) -> Sysctl;
}

impl SysctlExt for tm4c123x::SYSCTL {
    fn constrain(self) -> Sysctl {
        Sysctl {
            power_control: PowerControl { _0: () },
            clock_setup: ClockSetup {
                oscillator: Oscillator::PrecisionInternal(SystemClock::UseOscillator(Divider::_1)),
                _0: (),
            },
        }
    }
}

impl ClockSetup {
    /// Fix the clock configuration and produce a record of the configuration
    /// so that other modules can calibrate themselves (e.g. the UARTs).
    pub fn freeze(self) -> Clocks {
        // We own the SYSCTL at this point - no one else can be running.
        let p = unsafe { &*tm4c123x::SYSCTL::ptr() };

        let mut osc = 0u32;
        let mut sysclk = 0u32;

        match self.oscillator {
            Oscillator::Main(crystal_frequency, system_clock) => {
                p.rcc.write(|w| {
                    // BYPASS on
                    w.bypass().set_bit();
                    // OSCSRC = Main Oscillator
                    w.oscsrc().main();
                    // Main Oscillator not disabled
                    w.moscdis().clear_bit();
                    // SysDiv = 0x00
                    unsafe {
                        w.sysdiv().bits(0x00);
                    }
                    // Set crystal frequency
                    osc = match crystal_frequency {
                        CrystalFrequency::_4mhz => {
                            w.xtal()._4mhz();
                            4_000_000
                        }
                        CrystalFrequency::_4_09mhz => {
                            w.xtal()._4_09mhz();
                            4_090_000
                        }
                        CrystalFrequency::_4_91mhz => {
                            w.xtal()._4_91mhz();
                            4_910_000
                        }
                        CrystalFrequency::_5mhz => {
                            w.xtal()._5mhz();
                            5_000_000
                        }
                        CrystalFrequency::_5_12mhz => {
                            w.xtal()._5_12mhz();
                            5_120_000
                        }
                        CrystalFrequency::_6mhz => {
                            w.xtal()._6mhz();
                            6_000_000
                        }
                        CrystalFrequency::_6_14mhz => {
                            w.xtal()._6_14mhz();
                            6_140_000
                        }
                        CrystalFrequency::_7_37mhz => {
                            w.xtal()._7_37mhz();
                            7_370_000
                        }
                        CrystalFrequency::_8mhz => {
                            w.xtal()._8mhz();
                            8_000_000
                        }
                        CrystalFrequency::_8_19mhz => {
                            w.xtal()._8_19mhz();
                            8_190_000
                        }
                        CrystalFrequency::_10mhz => {
                            w.xtal()._10mhz();
                            10_000_000
                        }
                        CrystalFrequency::_12mhz => {
                            w.xtal()._12mhz();
                            12_000_000
                        }
                        CrystalFrequency::_12_2mhz => {
                            w.xtal()._12_2mhz();
                            12_200_000
                        }
                        CrystalFrequency::_13_5mhz => {
                            w.xtal()._13_5mhz();
                            13_500_000
                        }
                        CrystalFrequency::_14_3mhz => {
                            w.xtal()._14_3mhz();
                            14_300_000
                        }
                        CrystalFrequency::_16mhz => {
                            w.xtal()._16mhz();
                            16_000_000
                        }
                        CrystalFrequency::_16_3mhz => {
                            w.xtal()._16_3mhz();
                            16_300_000
                        }
                        CrystalFrequency::_18mhz => {
                            w.xtal()._18mhz();
                            18_000_000
                        }
                        CrystalFrequency::_20mhz => {
                            w.xtal()._20mhz();
                            20_000_000
                        }
                        CrystalFrequency::_24mhz => {
                            w.xtal()._24mhz();
                            24_000_000
                        }
                        CrystalFrequency::_25mhz => {
                            w.xtal()._25mhz();
                            25_000_000
                        }
                    };
                    if let SystemClock::UseOscillator(div) = system_clock {
                        w.usesysdiv().set_bit();
                        unsafe {
                            w.sysdiv().bits(div as u8);
                        }
                        sysclk = osc / (div as u32);
                    } else {
                        // Run 1:1 now, do PLL later
                        w.usesysdiv().clear_bit();
                        unsafe {
                            w.sysdiv().bits(0);
                        }
                        sysclk = osc;
                    }
                    w
                });
            }
            // The default
            Oscillator::PrecisionInternal(system_clock) => {
                osc = 16_000_000;
                p.rcc.write(|w| {
                    // BYPASS on
                    w.bypass().set_bit();
                    // OSCSRC = Internal Oscillator
                    w.oscsrc().int();
                    // Main Oscillator disabled
                    w.moscdis().set_bit();
                    // SysDiv = ?
                    if let SystemClock::UseOscillator(div) = system_clock {
                        w.usesysdiv().set_bit();
                        unsafe {
                            w.sysdiv().bits(div as u8);
                        }
                        sysclk = osc / (div as u32);
                    } else {
                        // Run 1:1 now, do PLL later
                        w.usesysdiv().clear_bit();
                        unsafe {
                            w.sysdiv().bits(0);
                        }
                        sysclk = osc;
                    }
                    w
                });
            }
            Oscillator::PrecisionInternalDiv4(div) => {
                osc = 4_000_000;
                p.rcc.write(|w| {
                    // BYPASS on
                    w.bypass().set_bit();
                    // OSCSRC = Internal Oscillator / 4
                    w.oscsrc().int4();
                    // Main Oscillator disabled
                    w.moscdis().set_bit();
                    w.usesysdiv().set_bit();
                    unsafe {
                        w.sysdiv().bits(div as u8);
                    }
                    sysclk = osc / (div as u32);
                    w
                });
            }
            Oscillator::LowFrequencyInternal(div) => {
                osc = 30_000;
                p.rcc.write(|w| {
                    // BYPASS on
                    w.bypass().set_bit();
                    // OSCSRC = Low Frequency internal (30 kHz)
                    w.oscsrc()._30();
                    // Main Oscillator disabled
                    w.moscdis().set_bit();
                    w.usesysdiv().set_bit();
                    unsafe {
                        w.sysdiv().bits(div as u8);
                    }
                    sysclk = osc / (div as u32);
                    w
                });
            }
        }

        match self.oscillator {
            Oscillator::PrecisionInternal(SystemClock::UsePll(f))
            | Oscillator::Main(_, SystemClock::UsePll(f)) => {
                // Configure 400MHz PLL with divider f

                // Set PLL bit in masked interrupt status to clear
                // PLL lock status
                p.misc.write(|w| w.plllmis().set_bit());

                // Enable the PLL
                p.rcc.modify(|_, w| w.pwrdn().clear_bit());

                while p.pllstat.read().lock().bit_is_clear() {
                    nop();
                }

                match f {
                    // We need to use RCC2 for this one
                    PllOutputFrequency::_80_00mhz => {
                        p.rcc2.write(|w| {
                            w.usercc2().set_bit();
                            // Divide 400 MHz not 200 MHz
                            w.div400().set_bit();
                            // div=2 with lsb=0 gives divide by 5, so 400 MHz => 80 MHz
                            w.sysdiv2lsb().clear_bit();
                            unsafe { w.sysdiv2().bits(2) };
                            w.bypass2().clear_bit();
                            w
                        });
                        sysclk = 400_000_000u32 / 5;
                    }
                    _ => {
                        // All the other frequencies can be done with legacy registers
                        p.rcc.modify(|_, w| {
                            unsafe { w.sysdiv().bits(f as u8) };
                            w.usesysdiv().set_bit();
                            w.bypass().clear_bit();
                            w
                        });
                        sysclk = 400_000_000u32 / (2 * ((f as u32) + 1));
                    }
                }
            }
            _ => {}
        }

        Clocks {
            osc: osc.hz(),
            sysclk: sysclk.hz(),
        }
    }
}

impl Clocks {
    /// Returns the frequency of the oscillator.
    pub fn osc(&self) -> Hertz {
        self.osc
    }

    /// Returns the system (core) frequency
    pub fn sysclk(&self) -> Hertz {
        self.sysclk
    }
}

impl PowerControl {}

/// This module is all about identifying the physical chip we're running on.
pub mod chip_id {
    /// Possible errors we can get back when parsing the ID registers.
    #[derive(Debug)]
    pub enum Error {
        /// Unknown value in DID0
        UnknownDid0Ver(u8),
        /// Unknown value in DID1
        UnknownDid1Ver(u8),
    }

    /// What sort of device is this?
    #[derive(Debug)]
    pub enum DeviceClass {
        /// It's a Stellaris LM4F or a TM4C123 (they have the same value)
        StellarisBlizzard,
        /// I don't know what chip this is
        Unknown,
    }

    /// How many pins on this chip's package?
    #[derive(Debug)]
    pub enum PinCount {
        /// It's a 28 pin package
        _28,
        /// It's a 48 pin package
        _48,
        /// It's a 100 pin package
        _100,
        /// It's a 64 pin package
        _64,
        /// It's a 144 pin package
        _144,
        /// It's a 157 pin package
        _157,
        /// It's a 168 pin package (TM4C123 only)
        _168,
        /// I don't know what chip this is
        Unknown,
    }

    /// What temperature range does this chip support?
    #[derive(Debug)]
    pub enum TempRange {
        /// It's a Commercial temperature range part (0°C - +70°C)
        Commercial,
        /// It's a Industrial temperature range part (-40°C - +85°C)
        Industrial,
        /// It's a Extended temperature range part (-40°C - +105°C)
        Extended,
        /// It's either Extended or Industrial depending on the exact part number
        IndustrialOrExtended,
        /// I don't know what temperature range this is
        Unknown,
    }

    /// What package is this chip in?
    #[derive(Debug)]
    pub enum Package {
        /// It's a SOIC package
        Soic,
        /// It's a LQFP package
        Lqfp,
        /// It's a BGA package
        Bga,
        /// I don't know what package this is
        Unknown,
    }

    /// Is this an experimental chip or a production part?
    #[derive(Debug)]
    pub enum Qualification {
        /// It's a Engineering Sample chip
        EngineeringSample,
        /// It's a Pilot Production chip
        PilotProduction,
        /// It's a Fully Qualified chip
        FullyQualified,
        /// I don't know what qualification this is
        Unknown,
    }

    /// These values describe the part number
    #[derive(Debug)]
    pub enum PartNo {
        /// It's a TM4C123GH6PM
        Tm4c123gh6pm,
        /// It's a LM4F120H5QR
        Lm4f120h5qr,
        /// It's an unknown chip - please file a bug report
        Unknown(u8),
    }

    /// These values describe the physical LM4F/TM4C chip
    #[derive(Debug)]
    pub struct ChipId {
        /// The device class
        pub device_class: DeviceClass,
        /// The major revision
        pub major: u8,
        /// The minor revision
        pub minor: u8,
        /// The chip's pin count
        pub pin_count: PinCount,
        /// The chip's temperature range
        pub temp_range: TempRange,
        /// The chip's package
        pub package: Package,
        /// True if the chip is RoHS compliant
        pub rohs_compliant: bool,
        /// The chip's qualification
        pub qualification: Qualification,
        /// The chip's part number
        pub part_no: PartNo,
    }

    /// Read DID0 and DID1 to discover what sort of
    /// TM4C123/LM4F120 this is.
    pub fn get() -> Result<ChipId, Error> {
        use tm4c123x;
        // This is safe as it's read only
        let p = unsafe { &*tm4c123x::SYSCTL::ptr() };
        let did0 = p.did0.read();
        if did0.ver().bits() != 0x01 {
            return Err(Error::UnknownDid0Ver(did0.ver().bits()));
        }
        let device_class = match did0.class().bits() {
            5 => DeviceClass::StellarisBlizzard,
            _ => DeviceClass::Unknown,
        };
        let major = did0.maj().bits();
        let minor = did0.min().bits();
        let did1 = p.did1.read();
        if did1.ver().bits() != 0x01 {
            // Stellaris LM3F (0x00) is not supported
            return Err(Error::UnknownDid1Ver(did1.ver().bits()));
        }
        let part_no = match did1.prtno().bits() {
            0x04 => PartNo::Lm4f120h5qr,
            0xA1 => PartNo::Tm4c123gh6pm,
            e => PartNo::Unknown(e),
        };
        let pin_count = match did1.pincnt().bits() {
            0 => PinCount::_28,
            1 => PinCount::_48,
            2 => PinCount::_100,
            3 => PinCount::_64,
            4 => PinCount::_144,
            5 => PinCount::_157,
            6 => PinCount::_168,
            _ => PinCount::Unknown,
        };
        let temp_range = match did1.temp().bits() {
            0 => TempRange::Commercial,
            1 => TempRange::Industrial,
            2 => TempRange::Extended,
            3 => TempRange::IndustrialOrExtended,
            _ => TempRange::Unknown,
        };
        let package = match did1.pkg().bits() {
            0 => Package::Soic,
            1 => Package::Lqfp,
            2 => Package::Bga,
            _ => Package::Unknown,
        };
        let rohs_compliant = did1.rohs().bit_is_set();
        let qualification = match did1.qual().bits() {
            0 => Qualification::EngineeringSample,
            1 => Qualification::PilotProduction,
            2 => Qualification::FullyQualified,
            _ => Qualification::Unknown,
        };
        Ok(ChipId {
            device_class,
            major,
            minor,
            pin_count,
            temp_range,
            package,
            rohs_compliant,
            qualification,
            part_no,
        })
    }
}

// End of file