1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
//! Inter-Integrated Circuit (I2C) bus

use tm4c123x::{I2C0, I2C1, I2C2, I2C3};

use crate::gpio::gpioa::{PA6, PA7};
use crate::gpio::gpiob::{PB2, PB3};
use crate::gpio::gpiod::{PD0, PD1};
use crate::gpio::gpioe::{PE4, PE5};

use crate::gpio::{AlternateFunction, Floating, OpenDrain, OutputMode, AF3};

use crate::sysctl::{self, Clocks};

use crate::hal::blocking::i2c::{Read, Write, WriteRead};
use crate::time::Hertz;

/// I2C error
#[derive(Debug)]
pub enum Error {
    /// Bus error
    Bus,
    /// Arbitration loss
    Arbitration,

    /// Missing Data ACK
    DataAck,

    /// Missing Addrees ACK
    AdrAck,

    #[doc(hidden)]
    _Extensible,
}

// FIXME these should be "closed" traits
/// SCL pin -- DO NOT IMPLEMENT THIS TRAIT
pub unsafe trait SclPin<I2C> {}

/// SDA pin -- DO NOT IMPLEMENT THIS TRAIT
pub unsafe trait SdaPin<I2C> {}

unsafe impl<T> SclPin<I2C0> for PB2<AlternateFunction<AF3, T>> where T: OutputMode {}
unsafe impl SdaPin<I2C0> for PB3<AlternateFunction<AF3, OpenDrain<Floating>>> {}

unsafe impl<T> SclPin<I2C1> for PA6<AlternateFunction<AF3, T>> where T: OutputMode {}
unsafe impl SdaPin<I2C1> for PA7<AlternateFunction<AF3, OpenDrain<Floating>>> {}

unsafe impl<T> SclPin<I2C2> for PE4<AlternateFunction<AF3, T>> where T: OutputMode {}
unsafe impl SdaPin<I2C2> for PE5<AlternateFunction<AF3, OpenDrain<Floating>>> {}

unsafe impl<T> SclPin<I2C3> for PD0<AlternateFunction<AF3, T>> where T: OutputMode {}
unsafe impl SdaPin<I2C3> for PD1<AlternateFunction<AF3, OpenDrain<Floating>>> {}

/// I2C peripheral operating in master mode
pub struct I2c<I2C, PINS> {
    i2c: I2C,
    pins: PINS,
}

macro_rules! busy_wait {
    ($i2c:expr, $flag:ident, $op:ident) => {
        loop {
            let mcs = $i2c.mcs.read();

            if mcs.error().bit_is_set() {
                if mcs.adrack().bit_is_set() {
                    return Err(Error::AdrAck);
                } else if mcs.datack().bit_is_set() {
                    return Err(Error::DataAck);
                }
                return Err(Error::Bus);
            } else if mcs.arblst().bit_is_set() {
                return Err(Error::Arbitration);
            } else if mcs.$flag().$op() {
                break;
            } else {
                // try again
            }
        }
    };
}

macro_rules! hal {
    ($($I2CX:ident: ($powerDomain:ident, $i2cX:ident),)+) => {
        $(
            impl<SCL, SDA> I2c<$I2CX, (SCL, SDA)> {
                /// Configures the I2C peripheral to work in master mode
                pub fn $i2cX<F>(
                    i2c: $I2CX,
                    pins: (SCL, SDA),
                    freq: F,
                    clocks: &Clocks,
                    pc: &sysctl::PowerControl,
                ) -> Self where
                    F: Into<Hertz>,
                    SCL: SclPin<$I2CX>,
                    SDA: SdaPin<$I2CX>,
                {
                    sysctl::control_power(
                        pc, sysctl::Domain::$powerDomain,
                        sysctl::RunMode::Run, sysctl::PowerState::On);
                    sysctl::reset(pc, sysctl::Domain::$powerDomain);

                    // set Master Function Enable, and clear other bits.
                    i2c.mcr.write(|w| w.mfe().set_bit());

                    // Write TimerPeriod configuration and clear other bits.
                    let freq = freq.into().0;
                    let tpr = ((clocks.sysclk.0/(2*10*freq))-1) as u8;

                    i2c.mtpr.write(|w| unsafe {w.tpr().bits(tpr)});

                    I2c { i2c, pins }
                }

                /// Releases the I2C peripheral and associated pins
                pub fn free(self) -> ($I2CX, (SCL, SDA)) {
                    (self.i2c, self.pins)
                }
            }

            impl<PINS> Write for I2c<$I2CX, PINS> {
                type Error = Error;

                fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
                    // Write Slave address and clear Receive bit
                    self.i2c.msa.write(|w| unsafe {
                        w.sa().bits(addr)
                    });

                    // Put first byte in data register
                    self.i2c.mdr.write(|w| unsafe {
                        w.data().bits(bytes[0])
                    });

                    let sz = bytes.len();

                    busy_wait!(self.i2c, busbsy, bit_is_clear);

                    // Send START + RUN
                    // If single byte transfer, set STOP
                    self.i2c.mcs.write(|w| {
                        if sz == 1 {
                            w.stop().set_bit();
                        }
                        w.start().set_bit()
                            .run().set_bit()
                    });

                    for (i,byte) in (&bytes[1..]).iter().enumerate() {
                        busy_wait!(self.i2c, busy, bit_is_clear);

                        // Put next byte in data register
                        self.i2c.mdr.write(|w| unsafe {
                            w.data().bits(*byte)
                        });

                        // Send RUN command (Burst continue)
                        // Set STOP on last byte
                        self.i2c.mcs.write(|w| {
                            if (i+1) == (sz-1) {
                                w.stop().set_bit();
                            }
                            w.run().set_bit()
                        });
                    }

                    busy_wait!(self.i2c, busy, bit_is_clear);

                    Ok(())
                }
            }

            impl<PINS> Read for I2c<$I2CX, PINS> {
                type Error = Error;

                fn read(
                    &mut self,
                    addr: u8,
                    buffer: &mut [u8],
                ) -> Result<(), Error> {

                    // Write Slave address and set Receive bit
                    self.i2c.msa.write(|w| unsafe {
                        w.sa().bits(addr)
                            .rs().set_bit()
                    });

                    busy_wait!(self.i2c, busbsy, bit_is_clear);
                    let recv_sz = buffer.len();

                    if recv_sz == 1 {
                        // Single receive
                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                                .start().set_bit()
                                .stop().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[0] = self.i2c.mdr.read().data().bits();
                    } else {
                        self.i2c.mcs.write(|w| {
                            w.start().set_bit()
                                .run().set_bit()
                                .ack().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[0] = self.i2c.mdr.read().data().bits();

                        for byte in &mut buffer[1..recv_sz-1] {
                            self.i2c.mcs.write(|w| {
                                w.run().set_bit()
                                    .ack().set_bit()
                            });
                            busy_wait!(self.i2c, busy, bit_is_clear);
                            *byte = self.i2c.mdr.read().data().bits();
                        }
                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                                .stop().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[recv_sz-1] = self.i2c.mdr.read().data().bits();
                    }

                    Ok(())
                }
            }

            impl<PINS> WriteRead for I2c<$I2CX, PINS> {
                type Error = Error;

                fn write_read(
                    &mut self,
                    addr: u8,
                    bytes: &[u8],
                    buffer: &mut [u8],
                ) -> Result<(), Error> {

                    let write_len = bytes.len();

                    if buffer.len() == 0 {
                       return self.write(addr, bytes);
                    }

                    if bytes.len() == 0 {
                        return self.read(addr, buffer);
                    }

                    // Write Slave address and clear Receive bit
                    self.i2c.msa.write(|w| unsafe {
                        w.sa().bits(addr)
                    });

                    // send first byte
                    self.i2c.mdr.write(|w| unsafe {
                        w.data().bits(bytes[0])
                    });

                    busy_wait!(self.i2c, busbsy, bit_is_clear);

                    self.i2c.mcs.write(|w| {
                        w.start().set_bit()
                            .run().set_bit()
                    });

                    busy_wait!(self.i2c, busy, bit_is_clear);

                    for byte in (&bytes[1..write_len]).iter() {
                        self.i2c.mdr.write(|w| unsafe {
                            w.data().bits(*byte)
                        });

                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                    }

                    // Write Slave address and set Receive bit
                    self.i2c.msa.write(|w| unsafe {
                        w.sa().bits(addr)
                            .rs().set_bit()
                    });

                    let recv_sz = buffer.len();

                    if recv_sz == 1 {
                        // emit Repeated START and STOP for single receive
                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                                .start().set_bit()
                                .stop().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[0] = self.i2c.mdr.read().data().bits();
                    } else {
                        // emit Repeated START
                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                                .start().set_bit()
                                .ack().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[0] = self.i2c.mdr.read().data().bits();

                        for byte in &mut buffer[1..recv_sz-1] {
                            self.i2c.mcs.write(|w| {
                                w.run().set_bit()
                                    .ack().set_bit()
                            });
                            busy_wait!(self.i2c, busy, bit_is_clear);
                            *byte = self.i2c.mdr.read().data().bits();
                        }

                        self.i2c.mcs.write(|w| {
                            w.run().set_bit()
                                .stop().set_bit()
                        });

                        busy_wait!(self.i2c, busy, bit_is_clear);
                        buffer[recv_sz-1] = self.i2c.mdr.read().data().bits();
                    }

                    Ok(())
                }
            }
        )+
    }
}

hal! {
    I2C0: (I2c0, i2c0),
    I2C1: (I2c1, i2c1),
    I2C2: (I2c2, i2c2),
    I2C3: (I2c3, i2c3),
}