1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//! Tracks minimal sets of mutually incomparable elements of a partial order.

// use progress::CountMap;
use order::PartialOrder;

/// A set of mutually incomparable elements.
///
/// An antichain is a set of partially ordered elements, each of which is incomparable to the others.
/// This antichain implementation allows you to repeatedly introduce elements to the antichain, and 
/// which will evict larger elements to maintain the *minimal* antichain, those incomparable elements 
/// no greater than any other element.
#[derive(Default, Clone, Debug)]
pub struct Antichain<T> {
    elements: Vec<T>
}

impl<T: PartialOrder> Antichain<T> {
    /// Updates the `Antichain` if the element is not greater than or equal to some present element.
    ///
    /// Returns true if element is added to the set
    pub fn insert(&mut self, element: T) -> bool {
        if !self.elements.iter().any(|x| x.less_equal(&element)) {
            self.elements.retain(|x| !element.less_equal(x));
            self.elements.push(element);
            true
        }
        else {
            false
        }
    }

    /// Creates a new empty `Antichain`.
    pub fn new() -> Antichain<T> { Antichain { elements: Vec::new() } }

    /// Creates a new singleton `Antichain`.
    pub fn from_elem(element: T) -> Antichain<T> { Antichain { elements: vec![element] } }

    /// Clears the contents of the antichain.
    pub fn clear(&mut self) { self.elements.clear() }

    /// Returns true if any item in the antichain is strictly less than the argument.
    #[inline]
    pub fn less_than(&self, time: &T) -> bool {
        self.elements.iter().any(|x| x.less_than(time))
    }

    /// Returns true if any item in the antichain is less than or equal to the argument.
    #[inline]
    pub fn less_equal(&self, time: &T) -> bool {
        self.elements.iter().any(|x| x.less_equal(time))
    }

    /// Returns true if every element of `other` is greater or equal to some element of `self`.
    #[inline]
    pub fn dominates(&self, other: &Antichain<T>) -> bool {
        other.elements().iter().all(|t2| self.elements().iter().any(|t1| t1.less_equal(t2)))
    }
    
    /// Reveals the elements in the antichain.
    #[inline] pub fn elements(&self) -> &[T] { &self.elements[..] }
}

/// An antichain based on a multiset whose elements frequencies can be updated.
///
/// The `MutableAntichain` maintains frequencies for many elements of type `T`, and exposes the set 
/// of elements with positive count not greater than any other elements with positive count. The 
/// antichain may both advance and retreat; the changes do not all need to be to elements greater or
/// equal to some elements of the frontier.
///
/// The type `T` must implement `PartialOrder` as well as `Ord`. The implementation of the `Ord` trait
/// is used to efficiently organize the updates for cancellation, and to efficiently determine the lower
/// bounds, and only needs to not contradict the `PartialOrder` implementation (that is, if `PartialOrder`
/// orders two elements, the so does the `Ord` implementation).
///
/// The `MutableAntichain` implementation is done with the intent that updates to it are done in batches,
/// and it is acceptable to rebuild the frontier from scratch when a batch of updates change it. This means
/// that it can be expensive to maintain a large number of counts and change few elements near the frontier.
///
/// There is an `update_dirty` method for single updates that leave the `MutableAntichain` in a dirty state,
/// but I strongly recommend against using them unless you must (on part of timely progress tracking seems 
/// to be greatly simplified by access to this)
#[derive(Default, Debug, Clone)]
pub struct MutableAntichain<T: PartialOrder+Ord> {
    dirty: usize,
    updates: Vec<(T, i64)>,
    frontier: Vec<T>,
    frontier_temp: Vec<T>,
}

impl<T: PartialOrder+Ord+Clone+'static> MutableAntichain<T> {
    /// Creates a new empty `MutableAntichain`.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn new() -> MutableAntichain<T> {
        MutableAntichain {
            dirty: 0,
            updates: Vec::new(),
            frontier:  Vec::new(),
            frontier_temp: Vec::new(),
        }
    }

    /// Removes all elements.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// frontier.clear();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn clear(&mut self) {
        self.dirty = 0;
        self.updates.clear();
        self.frontier.clear();
        self.frontier_temp.clear();
    }

    /// Reveals the minimal elements with positive count.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.frontier().len() == 0);
    ///```
    #[inline]
    pub fn frontier(&self) -> &[T] {
        debug_assert_eq!(self.dirty, 0);
        &self.frontier 
    }

    /// Creates a new singleton `MutableAntichain`.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(0u64);
    /// assert_eq!(frontier.frontier(), &[0u64]);
    ///```
    #[inline]
    pub fn new_bottom(bottom: T) -> MutableAntichain<T> {
        MutableAntichain {
            dirty: 0,
            updates: vec![(bottom.clone(), 1)],
            frontier: vec![bottom.clone()],
            frontier_temp: Vec::new(),
        }
    }

    /// Returns true if there are no elements in the `MutableAntichain`.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn is_empty(&self) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier.is_empty() 
    }

    /// Returns true if any item in the `MutableAntichain` is strictly less than the argument.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// assert!(!frontier.less_than(&0));
    /// assert!(!frontier.less_than(&1));
    /// assert!(frontier.less_than(&2));
    ///```
    #[inline]
    pub fn less_than(&self, time: &T) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier.iter().any(|x| x.less_than(time))
    }

    /// Returns true if any item in the `MutableAntichain` is less than or equal to the argument.
    #[inline]
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// assert!(!frontier.less_equal(&0));
    /// assert!(frontier.less_equal(&1));
    /// assert!(frontier.less_equal(&2));
    ///```
    pub fn less_equal(&self, time: &T) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier.iter().any(|x| x.less_equal(time))
    }

    /// Allows a single-element push, but dirties the antichain and prevents inspection until cleaned.
    /// 
    /// At the moment inspection is prevented via panic, so best be careful (this should probably be fixed).
    /// It is *very* important if you want to use this method that very soon afterwards you call something
    /// akin to `update_iter`, perhaps with a `None` argument if you have no more data, as this method will
    /// tidy up the internal representation.
    #[inline]
    pub fn update_dirty(&mut self, time: T, delta: i64) {
        self.updates.push((time, delta));
        self.dirty += 1;
    }

    /// Applies updates to the antichain and applies `action` to each frontier change.
    ///
    /// This method applies a batch of updates and if any affects the frontier it is rebuilt.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// frontier.update_iter(vec![(1, -1), (2, 1)].into_iter());
    /// assert_eq!(frontier.frontier(), &[2]);
    ///```
    #[inline]
    pub fn update_iter<I>(&mut self, updates: I)
    where 
        I: IntoIterator<Item = (T, i64)>
    {
        self.update_iter_and(updates, |_,_| { });
    }

    /// Applies updates to the antichain and applies `action` to each frontier change.
    ///
    /// This method applies a batch of updates and if any affects the frontier it is rebuilt.
    /// Once rebuilt, `action` is called with the corresponding changes to the frontier, which 
    /// should be various times and `{ +1, -1 }` differences.
    ///
    /// #Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// let mut changes = Vec::new();
    /// frontier.update_iter_and(vec![(1, -1), (2, 1)].into_iter(), |time, diff| {
    ///     changes.push((time.clone(), diff));
    /// });
    /// assert_eq!(frontier.frontier(), &[2]);
    /// changes.sort();
    /// assert_eq!(&changes[..], &[(1, -1), (2, 1)]);
    ///```
    #[inline]
    pub fn update_iter_and<I, A>(&mut self, updates: I, action: A)
    where 
        I: IntoIterator<Item = (T, i64)>,
        A: FnMut(&T, i64)
    {
        // track whether a rebuild is needed.
        let mut rebuild_required = false;

        for (time, delta) in updates {
            self.updates.push((time, delta));
            self.dirty += 1;
        }

        // determine if recently pushed data requires rebuilding the frontier.
        // note: this may be required even with an empty iterator, due to dirty data in self.updates.
        while self.dirty > 0 {

            let time = &self.updates[self.updates.len() - self.dirty].0;
            let delta = self.updates[self.updates.len() - self.dirty].1;

            let beyond_frontier = self.frontier.iter().any(|f| f.less_than(time));
            let before_frontier = !self.frontier.iter().any(|f| f.less_equal(time));
            rebuild_required = rebuild_required || !(beyond_frontier || (delta < 0 && before_frontier));
            
            self.dirty -= 1;
        }

        if rebuild_required {
            self.rebuild_and(action);
        }
    }

    /// Sorts and consolidates `self.updates` and applies `action` to any frontier changes.
    ///
    /// This method is meant to be used for bulk updates to the frontier, and does more work than one might do
    /// for single updates, but is meant to be an efficient way to process multiple updates together. This is 
    /// especially true when we want to apply very large numbers of updates.
    fn rebuild_and<A: FnMut(&T, i64)>(&mut self, mut action: A) {

        // sort and consolidate updates; retain non-zero accumulations.
        if !self.updates.is_empty() {
            self.updates.sort_by(|x,y| x.0.cmp(&y.0));
            for i in 0 .. self.updates.len() - 1 {
                if self.updates[i].0 == self.updates[i+1].0 {
                    self.updates[i+1].1 += self.updates[i].1;
                    self.updates[i].1 = 0;
                }
            }
            self.updates.retain(|x| x.1 != 0);
        }

        // build new frontier using strictly positive times.
        // as the times are sorted, we don't need to worry that we might displace frontier elements.
        for time in self.updates.iter().filter(|x| x.1 > 0) {
            if !self.frontier_temp.iter().any(|f| f.less_than(&time.0)) {
                self.frontier_temp.push(time.0.clone());
            }
        }

        // TODO: This is quadratic in the frontier size, but could be linear (with a merge).
        for time in self.frontier.iter() {
            if !self.frontier_temp.contains(time) {
                action(time, -1);
            }
        }
        ::std::mem::swap(&mut self.frontier, &mut self.frontier_temp);
        for time in self.frontier.iter() {
            if !self.frontier_temp.contains(time) {
                action(time, 1);
            }
        }
        self.frontier_temp.clear();
    }
}