1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
//! A crate for encoding TIFF files.
//! 
//! This crate allows to create any hierarchy of IFDs and to add any
//! tags with any values to each. It does so while avoiding that
//! the user needs to worry about the position of each structure in the
//! file and to point to it with the correct offset.
//! 
//! The main structure of this crate, used to actually write the TIFF
//! file, the is [`TiffFile`]. This structure writes the file in [little endian]
//! by default (but that can be changed) and requires an [`IfdChain`]. This
//! `IfdChain` consists of the first [`Ifd`] of the file, the one it points to (if any), 
//! and so on. Each `Ifd` has one or more entries, which are represented 
//! by a pair of [`FieldTag`] and [`FieldValues`].
//! 
//! # Examples
//! 
//! Creating a 256x256 bilevel image with every pixel black.
//! 
//! ```
//! use tiff_encoder::*;
//! use tiff_encoder::tiff_type::*;
//! 
//! // 256*256/8 = 8192
//! // The image data will have 8192 bytes with 0 in every bit (each representing a
//! // black pixel).
//! let image_data = vec![0x00; 8192];
//! 
//! TiffFile::new(
//!     Ifd::new()
//!         .with_entry(tag::PhotometricInterpretation, SHORT::single(1)) // Black is zero
//!         .with_entry(tag::Compression, SHORT::single(1)) // No compression
//!
//!         .with_entry(tag::ImageLength, LONG::single(256))
//!         .with_entry(tag::ImageWidth, LONG::single(256))
//!
//!         .with_entry(tag::ResolutionUnit, SHORT::single(1)) // No resolution unit
//!         .with_entry(tag::XResolution, RATIONAL::single(1, 1))
//!         .with_entry(tag::YResolution, RATIONAL::single(1, 1))
//!
//!         .with_entry(tag::RowsPerStrip, LONG::single(256)) // One strip for the whole image
//!         .with_entry(tag::StripByteCounts, LONG::single(8192)) 
//!         .with_entry(tag::StripOffsets, ByteBlock::single(image_data))
//!         .single() // This is the only Ifd in its IfdChain
//! ).write_to("example.tif").unwrap();
//! ```
//! 
//! [`TiffFile`]: struct.TiffFile.html
//! [little endian]: enum.Endianness.html#variant.II
//! [`Ifd`]: struct.Ifd.html
//! [`IfdChain`]: struct.IfdChain.html
//! [`FieldTag`]: type.FieldTag.html
//! [`FieldValues`]: trait.FieldValues.html

extern crate byteorder;

pub mod tiff_type;
pub mod tag;

use std::fs;
use std::io;
use std::io::Write;
use byteorder::{WriteBytesExt, LittleEndian, BigEndian};
use std::collections::BTreeMap;
use tiff_type::*;

/// The byte order used within the TIFF file.
/// 
/// There are two possible values: II (little-endian or Intel format)
/// and MM (big-endian or Motorola format).
#[derive(Clone, Copy)]
pub enum Endianness {
    /// Intel byte order, also known as little-endian.
    /// 
    /// The byte order is always from the least significant byte to
    /// the most significant byte.
    II,

    /// Motorola byte order, also known as big-endian.
    /// 
    /// The byte order is always from the most significant byte to
    /// the least significant byte.
    MM,
}
impl Endianness {
    /// Returns the u16 value that represents the given endianness 
    /// in a Tagged Image File Header.
    fn id(&self) -> u16 {
        match &self {
            Endianness::II => 0x4949,
            Endianness::MM => 0x4d4d,
        }
    }
}

/// A helper structure that provides convenience methods to write to
/// a `fs::File`, being aware of the file's [`Endianness`].
/// 
/// [`Endianness`]: enum.Endianness.html
pub struct EndianFile {
    file: fs::File,
    byte_order: Endianness,
    written_bytes: u32,
}
impl EndianFile {
    /// Writes a u8 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_u8(&mut self, n: u8) -> io::Result<()> {
        self.written_bytes += 1;
        self.file.write_u8(n)
    }

    /// Writes a slice of bytes to a file.
    ///
    /// This is much more efficient than calling [`write_u8`] in a loop if you have list
    /// of bytes to write.
    ///
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_all_u8(&mut self, bytes: &[u8]) -> io::Result<()> {
        self.written_bytes += bytes.len() as u32;
        self.file.write_all(bytes)
    }

    /// Writes a u16 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
   pub fn write_u16(&mut self, n: u16) -> io::Result<()> {
        self.written_bytes += 2;
        match self.byte_order {
            Endianness::II => {
                self.file.write_u16::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_u16::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes a u32 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_u32(&mut self, n: u32) -> io::Result<()> {
        self.written_bytes += 4;
        match self.byte_order {
            Endianness::II => {
                self.file.write_u32::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_u32::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes a i8 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_i8(&mut self, n: i8) -> io::Result<()> {
        self.written_bytes += 1;
        self.file.write_i8(n)
    }

    /// Writes a i16 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_i16(&mut self, n: i16) -> io::Result<()> {
        self.written_bytes += 2;
        match self.byte_order {
            Endianness::II => {
                self.file.write_i16::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_i16::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes a i32 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_i32(&mut self, n: i32) -> io::Result<()> {
        self.written_bytes += 4;
        match self.byte_order {
            Endianness::II => {
                self.file.write_i32::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_i32::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes a f32 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_f32(&mut self, n: f32) -> io::Result<()> {
        self.written_bytes += 4;
        match self.byte_order {
            Endianness::II => {
                self.file.write_f32::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_f32::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes a f64 to the file.
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    pub fn write_f64(&mut self, n: f64) -> io::Result<()> {
        self.written_bytes += 8;
        match self.byte_order {
            Endianness::II => {
                self.file.write_f64::<LittleEndian>(n)?;
            },
            Endianness::MM => {
                self.file.write_f64::<BigEndian>(n)?;
            },
        }
        Ok(())
    }

    /// Writes an arbitraty byte to the file.
    /// 
    /// This is useful when there is need to write an extra byte
    /// to guarantee that all offsets are even but that byte
    /// doesn't really hold any information.
    fn write_arbitrary_byte(&mut self) -> io::Result<()> {
        self.written_bytes += 1;
        self.file.write_u8(0)
    }

    /// Gets the number of written bytes to this file.
    fn written_bytes(&mut self) -> u32 {
        self.written_bytes
    }
}

/// Used during the allocation phase of the process of creating
/// a TIFF file.
/// 
/// Holds the number of bytes that were allocated, in order to
/// calculate the needed offsets.
#[doc(hidden)]
pub struct Cursor(u32);
impl Cursor {
    /// Creates a new `Cursor` with no bytes allocated.
    fn new() -> Self {
        Cursor(0)
    }

    /// Allocates a number of bytes to the `Cursor`.
    /// 
    /// # Panics
    /// 
    /// The maximum size of a TIFF file is 2**32 bits. Attempting
    /// to allocate more space than that will `panic`.
    fn allocate(&mut self, n: u32) {
        self.0 = match self.0.checked_add(n) {
            Some(val) => val,
            None => panic!("Attempted to write a TIFF file bigger than 2**32 bytes."),
        };
    }

    /// Returns the number of already allocated bytes.
    fn allocated_bytes(&self) -> u32 {
        self.0
    }
}

/// Representation of a Tagged Image File.
/// 
/// This is the central structure of the crate. It holds all the other structures
/// of the TIFF file and is responsible for writing them to a `fs::File`.
pub struct TiffFile {
    header: TiffHeader,
    ifds: IfdChain,
}

impl TiffFile {

    /// Creates a new `TiffFile` from an [`IfdChain`].
    /// 
    /// By default, a `TiffFile` is little-endian and has 42 as the magic number.
    /// If you want to change the endianness, consider chaining this function wih
    /// [`with_endianness`].
    /// 
    /// # Examples
    /// 
    /// Creating the simplest valid `TiffFile`: a single [`Ifd`] with only one entry.
    /// ```
    /// use tiff_encoder::*;
    /// use tiff_encoder::tiff_type::*;
    /// let tiff_file = TiffFile::new(
    ///     Ifd::new()
    ///         .with_entry(0x0000, BYTE::single(0))
    ///         .single()
    /// );
    /// ```
    /// [`Ifd`]: struct.Ifd.html
    /// [`IfdChain`]: struct.IfdChain.html
    /// [`with_endianness`]: #method.with_endianness
    pub fn new(ifds: IfdChain) -> TiffFile {
        TiffFile {
            header: TiffHeader {
                byte_order: Endianness::II,
                magic_number: 42,
            },

            ifds: ifds,
        }
    }

    /// Returns the same `TiffFile`, but with the specified `Endianness`.
    /// 
    /// # Examples
    /// 
    /// As this method returns `Self`, it can be chained when
    /// building a `TiffFile`.
    /// ```
    /// use tiff_encoder::*;
    /// use tiff_encoder::tiff_type::*;
    /// 
    /// let tiff_file = TiffFile::new(
    ///     Ifd::new()
    ///         .with_entry(0x0000, BYTE::single(0))
    ///         .single()
    /// ).with_endianness(Endianness::MM);
    /// ```
    pub fn with_endianness(mut self, endian: Endianness) -> Self {
        self.header.byte_order = endian;
        self
    }

    /// Writes the `TiffFile` content to a new file created at the given path.
    /// 
    /// Doing so consumes the `TiffFile`. Returns the new `fs::File` wrapped in
    /// an `io::Result`.
    /// 
    /// # Examples
    /// 
    /// Note that, in this example, `file` is a `fs::File`, not a `TiffFile`.
    /// ```
    /// use tiff_encoder::*;
    /// use tiff_encoder::tiff_type::*;
    /// 
    /// let file = TiffFile::new(
    ///     Ifd::new()
    ///         .with_entry(0x0000, BYTE::single(0))
    ///         .single()
    /// ).write_to("file.tif").unwrap();
    /// ```
    /// 
    /// # Errors
    ///
    /// This method returns the same errors as [`Write::write_all`].
    ///
    /// [`Write::write_all`]: https://doc.rust-lang.org/std/io/trait.Write.html#method.write_all
    /// 
    /// # Panics
    /// 
    /// This function will `panic` if the file trying to be written would exceed
    /// the maximum size of a TIFF file (2**32 bytes, or 4 GiB). 
    pub fn write_to(self, file_path: &str) -> io::Result<fs::File> {
        let file = fs::File::create(file_path)?;
        // Writing to a file is comprised of two phases: the "Allocating Phase" 
        // and the "Writting Phase". During the first, all the components of the
        // TiffFile allocate their space and become aware of the offsets to other
        // components that they might need to know. In the "Writting Phase", the 
        // components actually write their information to the file they've been 
        // allocated to.
        self.allocate(file).write()
    }

    /// Allocates all of its components to the given file, transforming
    /// itself into an `AllocatedTiffFile`.
    fn allocate(self, file: fs::File) -> AllocatedTiffFile {
        let mut c = Cursor::new();
        let header = self.header.allocate(&mut c);
        let ifds = self.ifds.allocate(&mut c);
        let file = EndianFile {
            file,
            byte_order: header.byte_order,
            written_bytes: 0,
        };
        
        AllocatedTiffFile {
            header,
            ifds,
            file,
        }
    }
}

/// Representation of a TiffFile that called `allocate(&str)` and is
/// ready to `write()`.
struct AllocatedTiffFile {
    header: AllocatedTiffHeader,
    ifds: AllocatedIfdChain,
    file: EndianFile,
}

impl AllocatedTiffFile {
    /// Writes all of its components to the file it has been allocated to.
    fn write(mut self) -> io::Result<fs::File> {
        
        self.header.write_to(&mut self.file)?;
        self.ifds.write_to(&mut self.file)?;
        
        Ok(self.file.file)
    }
}


/// Representation of the Header of a TIFF file.
struct TiffHeader {
    byte_order: Endianness,
    magic_number: u16,
}

impl TiffHeader {
    /// Allocates its space, moving the given `Cursor` forwards, and becomes
    /// aware of the offset to ifd0. 
    /// 
    /// Calling this will transform `self` into an `AllocatedTiffHeader`.
    fn allocate(self, c: &mut Cursor) -> AllocatedTiffHeader {
        c.allocate(8);
        AllocatedTiffHeader {
            byte_order: self.byte_order,
            magic_number: self.magic_number,
            offset_to_ifd0: c.allocated_bytes(),
        }
    }
}

/// Representation of a TiffHeader that called `allocate(&mut Cursor)` and is
/// ready to write to a file.
struct AllocatedTiffHeader {
    byte_order: Endianness,
    magic_number: u16,
    offset_to_ifd0: u32,
}

impl AllocatedTiffHeader {
    /// Write this header to the given `EndianFile`.
    fn write_to(self, file: &mut EndianFile) -> io::Result<()> {
        file.write_u16(self.byte_order.id())?;
        file.write_u16(self.magic_number)?;
        file.write_u32(self.offset_to_ifd0)?;
        
        Ok(())
    }
}


/// An ordered list of [`Ifd`]s, each pointing to the next one.
/// 
/// The last `Ifd` doesn't point to any other. 
/// 
/// Because any IFD could technically point to a next one, in most 
/// functions that one would expect to input an `Ifd`, its parameters 
/// actually ask for an `IfdChain`.
/// 
/// [`Ifd`]: struct.Ifd.html
pub struct IfdChain(Vec<Ifd>);
impl IfdChain {
    /// Creates a new `IfdChain` from a vector of [`Ifd`]s.
    ///  
    /// # Panics
    /// 
    /// The TIFF specification requires that each IFD must have at least one entry.
    /// 
    /// Trying to create an `IfdChain` with one or more empty `Ifd`s will `panic`.
    /// 
    /// [`Ifd`]: struct.Ifd.html
    pub fn new(ifds: Vec<Ifd>) -> IfdChain {
        if ifds.len() == 0 { panic!("Cannot create a chain without IFDs.") } 
        for ifd in ifds.iter() {
            if ifd.entry_count() == 0 {
                panic!("Tried to create a chain containing empty IFDs.\nEach IFD must have at least 1 entry.")
            } 
        }
        IfdChain(ifds)
    }

    /// Creates a new `IfdChain` from a single [`Ifd`].
    /// 
    /// # Panics
    /// 
    /// The TIFF specification requires that each IFD must have at least one entry.
    /// 
    /// Trying to create an `IfdChain` from an empty `Ifd` will `panic`.
    /// 
    /// 
    /// [`Ifd`]: struct.Ifd.html
    pub fn single(ifd: Ifd) -> IfdChain {
        IfdChain::new(vec![ifd])
    }

    /// Allocates every `Ifd` in the chain, moving the given `Cursor` forwards.
    /// 
    /// Calling this will transform `self` into an `AllocatedIfdChain`.
    fn allocate(self, c: &mut Cursor) -> AllocatedIfdChain {
        let len = self.0.len();
        let mut ifds = Vec::with_capacity(len);
        for (index, ifd) in self.0.into_iter().enumerate() {
            ifds.push(ifd.allocate(c, index+1 == len));
        }
        AllocatedIfdChain(ifds)
    } 
}

/// An `IfdChain` that called `allocate(&mut Cursor)` and is
/// ready to write to a file.
struct AllocatedIfdChain(Vec<AllocatedIfd>);
impl AllocatedIfdChain {
    /// Write all of the `IFD`s in this chain to the given `EndianFile`.
    fn write_to(self, file: &mut EndianFile) -> io::Result<()> {
        for ifd in self.0.into_iter() {
            ifd.write_to(file)?;
        }
        Ok(())
    }
}

/// A structure that holds both an IFD and all the values pointed at
/// by its entries.
/// 
/// An image file directory (IFD) contains information about the image, as
/// well as pointers to the actual image data (both stored as entries).
/// 
/// In a TIFF file, an IFD may point to another IFD with its last 4
/// bytes. To abstract the user of this crate from the position of each
/// structure in the file, this link between `Ifd`s is represented by
/// an [`IfdChain`]. Because any IFD could technically point to a next
/// one, in most functions that one would expect to input an `Ifd`, its
/// parameters actually ask for an `IfdChain`.
/// 
/// One can easily create an `IfdChain` of a single `Ifd` calling the
/// method [`single()`] on that Ifd.
/// 
/// [`IfdChain`]: struct.IfdChain.html
/// [`single()`]: #method.single
pub struct Ifd {
    entries: BTreeMap<FieldTag, Box<FieldValues>>,
}
impl Ifd {
    /// Creates a new empty `Ifd`.
    ///  
    /// Note that an empty IFD is prohibited by the TIFF specification.
    /// As such, it is not possible to directly use the resulting `Ifd` 
    /// alone in the creation of a TIFF file.
    /// 
    /// However, one can chain this function with methods such as 
    /// [`with_entry(FieldTag, FieldValues)`] in order to build a valid `Ifd`.
    /// 
    /// [`with_entry(FieldTag, FieldValues)`]: #method.with_entry
    pub fn new() -> Ifd {
        Ifd {
            entries: BTreeMap::new(),
        }
    }

    /// Returns the same `Ifd`, but adding the given pair of Tag and Values.
    /// 
    /// Because it returns `Self`, it is possible to chain this method.
    /// 
    /// # Examples
    /// 
    /// Creating a [`TiffFile`] with some arbitrary entries.
    /// 
    /// Note that the order in which entries are added is irrelevant. Internally, 
    /// the `Ifd` will automatically arrange them by ascending order of tags, as
    /// specified by the TIFF specification.
    /// 
    /// ```
    /// use tiff_encoder::*;
    /// use tiff_encoder::tiff_type::*;
    /// 
    /// let ifd = Ifd::new()
    ///     .with_entry(0x0000, BYTE::single(0))
    ///     .with_entry(0x00FF, LONG::single(500))
    ///     .with_entry(0xA01F, SHORT::values(vec![50, 2, 0, 3]))
    ///     .with_entry(0x0005, ASCII::from_str("Hello TIFF!"))
    ///     .with_entry(0x0100, UNDEFINED::values(vec![0x42, 0x42, 0x42, 0x42]));
    /// ```
    /// 
    /// # Panics 
    /// 
    /// In order to protect the user of this crate, trying to add a value
    /// to an already existing entry with this method is considered a mistake 
    /// and will `panic`.
    /// 
    /// Other functions that insert members to the `Ifd` will have an "Entries" 
    /// section, where they'll specify which entries are inserted.
    /// 
    /// [`TiffFile`]: struct.TiffFile.html
    pub fn with_entry<T: FieldValues + 'static>(mut self, tag: FieldTag, value: T) -> Self {
        if self.entries.insert(tag, Box::new(value)).is_some() {
            panic!("Tried to add the same tag twice.");
        }
        self
    }

    /// Returns the same `Ifd`, but adding the given subifds.
    /// 
    /// Because it returns `Self`, it is possible to chain this method.
    /// 
    /// # Entries
    /// 
    /// Using this method will automatically insert the entry 0x014A (tag::SubIFDs).
    /// 
    /// # Panics 
    /// 
    /// If the inserted entries already exist, this function will `panic`.
    /// 
    /// [`TiffFile`]: struct.TiffFile.html
    pub fn with_subifds(self, subifds: Vec<IfdChain>) -> Self {
        self.with_entry(tag::SubIFDs, OffsetsToIfds::new(subifds))
    }

    /// Returns an [`IfdChain`] containing solely this `Ifd`.
    /// 
    /// In other words, it marks this `Ifd` as the single element
    /// of its chain.
    /// 
    /// [`IfdChain`]: struct.IfdChain.html
    pub fn single(self) -> IfdChain {
        IfdChain::single(self)
    }

    /// Returns the number of entries present in this `Ifd`.
    fn entry_count(&self) -> u32 {
        self.entries.len() as u32
    }

    /// Returns the number of bytes occupied by this `Ifd` in its binary form.
    /// 
    /// Note that this only includes the IFD itself, not the values associated
    /// with it that don't fit in their entry nor the blocks of data pointed at by
    /// some of the fields.
    fn size(&self) -> u32 {
        self.entry_count() * 12 + 6
    }

    /// Allocates space in the given `Cursor` for this `Ifd`, as well as 
    /// the field values associated with it that don't fit in their entry.
    /// 
    /// Becomes aware of the position of the next IFD in its chain (if 
    /// its not the last IFD), thus transforming into an `AllocatedIFd`.
    fn allocate(self, c: &mut Cursor, last_ifd: bool) -> AllocatedIfd {
        c.allocate(self.size());
        
        let mut entries = BTreeMap::new();
        for (tag, value) in self.entries {
            entries.insert(tag, value.allocate(c));
        }
        
        let offset_to_next_ifd = if last_ifd {
           None
        } else {
           Some(c.allocated_bytes())
        };

        AllocatedIfd {
            entries,
            offset_to_next_ifd,
        }
    }
}

/// Representation of a `Ifd` that called `allocate(&mut Cursor, bool)` and is
/// ready to write to a file.
struct AllocatedIfd {
    entries: BTreeMap<FieldTag, Box<AllocatedFieldValues>>,
    offset_to_next_ifd: Option<u32>,
}

impl AllocatedIfd {
    /// Write this IFD to the given `EndianFile`, as well as any values
    /// associated with its entries.
    fn write_to(self, file: &mut EndianFile) -> io::Result<()> {
        let mut big_values = Vec::new();

        file.write_u16(self.entries.len() as u16)?;
        
        for (tag, value) in self.entries.into_iter() {
            let value = Self::write_entry_to((tag, value), file)?;
            if let Some(value) = value {
                big_values.push(value);
            }
        }
        file.write_u32(self.offset_to_next_ifd.unwrap_or(0))?;
        
        for value in big_values {
            value.write_to(file)?;
        }

        Ok(())
    }

    /// Write a single entry of the IFD. If its value doesn't fit,
    /// returns that value back so it can be written later, after
    /// the IFD.
    fn write_entry_to((tag, value): (FieldTag, Box<AllocatedFieldValues>), file: &mut EndianFile) 
    -> io::Result<Option<Box<AllocatedFieldValues>>> {
        file.write_u16(tag)?;
        file.write_u16(value.type_id())?;
        file.write_u32(value.count())?;
        
        match value.position() {
            Some(position) => {
                file.write_u32(position)?;
                Ok(Some(value))
            },
            None => {
                let size = value.size();
                value.write_to(file)?;
                for _ in 0..(4-size) {
                    file.write_u8(0)?;
                }
                Ok(None)
            }
        }
    }
}

/// 16-bit identifier of a field entry.
/// 
/// The module [`tag`] has some constants for commonly used
/// `FieldTag`s.
/// 
/// [`tag`]: ./tag/index.html
pub type FieldTag = u16;

/// Seals FieldValues, so that it can only be implemented inside
/// the crate. There are only three types of FieldValues:
/// `Offsets` to datablocks, `OffsetsToIfds` and `TiffTypeValues`.
mod private {
    pub trait Sealed {}
    impl<T: super::Datablock> Sealed for super::Offsets<T> {}
    impl<T: super::TiffType> Sealed for super::TiffTypeValues<T> {}
    impl Sealed for super::OffsetsToIfds {}
}

/// The values contained or pointed at by an IFD Field.
/// 
/// There are three groups of `FieldValues`: [`TiffTypeValues`],
/// [`Offsets`] and [`OffsetsToIfds`]. The first represents a list 
/// of values of any given [`TiffType`]. The second represents a 
/// list of [`LONG`] values, each pointing to a specific [`Datablock`].
/// The third represents a list of [`IFD`] values, each pointing to
/// an [`Ifd`].
/// 
/// It is not possible to implement this trait manually outside of
/// this crate.
/// 
/// [`TiffTypeValues`]: struct.TiffTypeValues.html
/// [`Offsets`]: struct.Offsets.html
/// [`OffsetsToIfds`]: struct.OffsetsToIfds.html
/// [`TiffType`]: tiff_type/trait.TiffType.html
/// [`LONG`]:tiff_type/struct.LONG.html
/// [`IFD`]:tiff_type/struct.IFD.html
/// [`Datablock`]: trait.Datablock.html
pub trait FieldValues: private::Sealed {
    /// The number of values the field contains.
    #[doc(hidden)]
    fn count(&self) -> u32;
    /// The sum of the size of every value in this field.
    /// 
    /// This doesn't include `Datablocks` owned by this field.
    #[doc(hidden)]
    fn size(&self) -> u32;
    /// Allocates the needed space in the given `Cursor`, transforming into
    /// an `AllocatedFieldValues`.
    #[doc(hidden)]
    fn allocate(self: Box<Self>, c: &mut Cursor) -> Box<AllocatedFieldValues>;
}

/// Allocated form of `FieldValues`
#[doc(hidden)]
pub trait AllocatedFieldValues {
    /// The number of values the field contains.
    fn count(&self) -> u32;
    /// The sum of the size of every value in this field.
    /// 
    /// This doesn't include `Datablocks` owned by this field.
    fn size(&self) -> u32;
    /// The offset to the first value (counting from the beginning of the file) 
    /// if the values don't fit in the IFD entry (in other words, if `size()` is
    /// bigger than 4 bytes).
    fn position(&self) -> Option<u32>;
    /// The TIFF 16-bit code that identifies the type of the values of the field.
    fn type_id(&self) -> u16;
    /// Write the values to the given `EndianFile`, as well as any other data
    /// they point to.
    fn write_to(self: Box<Self>, file: &mut EndianFile) -> io::Result<()>;
}

/// A block of data in the file pointed to by a field value, but
/// that isn't part of the field itself (such as image strips).
/// 
/// It is also possible to store any block of data in a [`ByteBlock`],
/// but that would require to know the [`Endianness`] of the file
/// beforehand, so the bytes are written in the correct order.
/// 
/// Using a `Datablock`, on the other hand, allows to make use
/// of the functionality of an [`EndianFile`], so the data can be
/// written without worrying about the endianness.
/// 
/// # Examples
/// 
/// Creating a DataBlock for `Vec<u32>`: 
/// ``` 
/// use std::io;
/// use tiff_encoder::*;
/// // Create a block that wraps the u32 data.
/// struct U32Block(Vec<u32>);
/// // Implement datablock functions
/// impl Datablock for U32Block {
///     fn size(&self) -> u32 {
///         // Each u32 occupies 4 bytes.
///         self.0.len() as u32 * 4
///     }
///     fn write_to(self, file: &mut EndianFile) -> io::Result<()> {
///         for val in self.0 {
///             file.write_u32(val)?
///         }
///         Ok(())
///     }
/// }
/// // (Optional) implement some convenient functions to construct Offsets
/// impl U32Block {
///     // Construct an Offsets to multiple U32Block
///     pub fn offsets(blocks: Vec<Vec<u32>>) -> Offsets<Self> {
///         Offsets::new(blocks.into_iter().map(|block| U32Block(block)).collect())
///     }
///     // Construct an Offsets to a single U32Block
///     pub fn single(block: Vec<u32>) -> Offsets<Self> {
///         U32Block::offsets(vec![block])
///     }
/// }
///
/// // A vector holding arbitrary u32 data.
/// // This is the data we want to store in the U32Block.
/// let data_32bits: Vec<u32> = vec![0; 65536];
///
/// // This is the value that can be used directly as an IFD entry value.
/// let byte_block = U32Block::single(data_32bits);
/// ```
/// 
/// [`ByteBlock`]: struct.ByteBlock.html
/// [`Endianness`]: enum.Endianness.html
/// [`EndianFile`]: struct.EndianFile.html
pub trait Datablock {
    /// The number of bytes occupied by this `Datablock`.
    /// 
    /// # Panics
    /// 
    /// The number of written bytes to the [`EndianFile`] in 
    /// [`write_to(self, &mut EndianFile)`] must be the same value returned 
    /// by this function.
    /// 
    /// Failing to meet that specification will `panic`.
    /// 
    /// [`EndianFile`]: struct.EndianFile.html
    /// [`write_to(self, &mut EndianFile)`]: #method.write_to
    fn size(&self) -> u32;

    /// Writes this `Datablock` to an [`EndianFile`]. The number of bytes 
    /// written must be exactly same number as returned by [`size(&self)`].
    /// 
    /// # Panics
    /// 
    /// Failing to write the exact same number of bytes as indicated in
    /// [`size(&self)`] will `panic`.
    /// 
    /// [`EndianFile`]: struct.EndianFile.html
    /// [`size(&self)`]: #method.size
    fn write_to(self, file: &mut EndianFile) -> io::Result<()>;
}

/// A list of [`IFD`] values, each pointing to a specific 
/// [`Ifd`].
/// 
/// This structure owns a list of [`IfdChain`]s instead, so the user
/// doesn't have to deal with the offsets in the file. Each [`IFD`] 
/// value will point to the first element of each [`IfdChain`]. Each
/// of those `Ifd`s will point to the next one in their chain (if they
/// are not the last of their chain) and so on.
/// 
/// It is responsible for writing both the offsets and all the [`Ifd`]s.
/// 
/// [`LONG`]:tiff_type/struct.LONG.html
/// [`IFD`]:tiff_type/struct.IFD.html
/// [`Ifd`]: struct.Ifd.html
/// [`IfdChain`]: struct.IfdChain.html
pub struct OffsetsToIfds {
    pub data: Vec<IfdChain>,
}
impl OffsetsToIfds {
    /// Creates a new `OffsetsToIfds` instance from a vector of [`IfdChain`]s.
    /// 
    /// [`IfdChain`]: struct.IfdChain.html
    pub fn new(ifds: Vec<IfdChain>) -> Self {
        OffsetsToIfds {
            data: ifds,
        }
    }
}
impl FieldValues for OffsetsToIfds {
    fn count(&self) -> u32 {
        self.data.len() as u32
    }

    fn size(&self) -> u32 {
        IFD::size() * self.count()
    }

    fn allocate(self: Box<Self>, c: &mut Cursor) -> Box<AllocatedFieldValues> {
        let position = Some(c.allocated_bytes());
        if self.data.len() == 1 {
            // If there is just one block, the position will point directly at it.
            // As such, the offsets vector will be kept empty.
            let offsets = Vec::new();
            let ifd = self.data.into_iter().next().unwrap(); // Data has size of 1
            let allocated_data = vec![ifd.allocate(c)];
            
            Box::new(AllocatedOffsetsToIfds {
                position,
                offsets,
                data: allocated_data,
            })
        } else {
            c.allocate(self.size());
            let mut offsets = Vec::with_capacity(self.data.len());
            let mut allocated_data = Vec::with_capacity(self.data.len());

            for ifd in self.data {
                offsets.push(IFD(c.allocated_bytes()));
                allocated_data.push(ifd.allocate(c));
            }

            Box::new(AllocatedOffsetsToIfds {
                position,
                offsets,
                data: allocated_data,
            })
        }
    }
}

/// Allocated form of `OffsetsToIfds`
struct AllocatedOffsetsToIfds {
    position: Option<u32>,
    offsets: Vec<IFD>,
    data: Vec<AllocatedIfdChain>,
}
impl AllocatedFieldValues for AllocatedOffsetsToIfds {
    fn count(&self) -> u32 {
        self.data.len() as u32
    }

    fn size(&self) -> u32 {
        IFD::size() * self.count()
    }

    fn position(&self) -> Option<u32> {
        self.position
    }

    fn type_id(&self) -> u16 {
        IFD::id()
    }

    fn write_to(self: Box<Self>, file: &mut EndianFile) -> io::Result<()> {
        let unboxed = *self;
        let Self { data, offsets, ..} = unboxed;
        for offset in offsets {
            offset.write_to(file)?;
        }
        for ifd in data.into_iter() {
            ifd.write_to(file)?;
        }
        
        Ok(())
    }
}

/// A list of [`LONG`] values, each pointing to a specific 
/// [`Datablock`].
/// 
/// This structure owns the list of Datablocks instead, so the user
/// doesn't have to deal with the offsets in the file. It is responsible
/// for writing both the offsets and the blocks of data.
/// 
/// [`LONG`]:tiff_type/struct.LONG.html
/// [`Datablock`]: trait.Datablock.html
pub struct Offsets<T: Datablock> {
    pub data: Vec<T>,
}
impl<T: Datablock + 'static> Offsets<T> {
    /// Creates a new `Offsets` instance from a vector of [`Datablock`]s.
    /// 
    /// [`Datablock`]: trait.Datablock.html
    pub fn new(datablocks: Vec<T>) -> Self {
        Offsets {
            data: datablocks,
        }
    }

    /// Creates a new `Offsets` instance from a single [`Datablock`].
    /// 
    /// [`Datablock`]: trait.Datablock.html
    pub fn single(datablock: T) -> Self {
        Offsets::new(vec![datablock])
    }
}
impl<T: Datablock + 'static> FieldValues for Offsets<T> {
    fn count(&self) -> u32 {
        self.data.len() as u32
    }

    fn size(&self) -> u32 {
        LONG::size() * self.count()
    }

    fn allocate(self: Box<Self>, c: &mut Cursor) -> Box<AllocatedFieldValues> {
        let position = Some(c.allocated_bytes());
        if self.data.len() == 1 {
            // If there is just one block, the position will point directly at it.
            // As such, the offsets vector will be kept empty.
            let offsets = Vec::new();
            let block_size = self.data.get(0).unwrap().size(); // Data has size of 1

            // Internally allocate an extra byte if size is odd.
            // This guarantes that the next element will
            // begin on a word-boundary.
            c.allocate(
                if block_size%2 == 0 {
                    block_size
                } else {
                    block_size+1
                }
            );
            
            Box::new(AllocatedOffsets {
                position,
                offsets,
                data: self.data,
            })
        } else {
            c.allocate(self.size());
            let mut offsets = Vec::with_capacity(self.data.len());

            for block in self.data.iter() {
                offsets.push(LONG(c.allocated_bytes()));
                c.allocate(
                    if block.size()%2 == 0 {
                        block.size()
                    } else {
                        block.size()+1
                    }
                );
            }

            Box::new(AllocatedOffsets {
                position,
                offsets,
                data: self.data,
            })
        }
    }   
}

/// Allocated form of `Offsets`
struct AllocatedOffsets<T: Datablock> {
    position: Option<u32>,
    offsets: Vec<LONG>,
    data: Vec<T>,
}
impl<T: Datablock> AllocatedFieldValues for AllocatedOffsets<T> {
    fn count(&self) -> u32 {
        self.data.len() as u32
    }

    fn size(&self) -> u32 {
        LONG::size() * self.count()
    }

    fn position(&self) -> Option<u32> {
        self.position
    }

    fn type_id(&self) -> u16 {
        LONG::id()
    }

    fn write_to(self: Box<Self>, file: &mut EndianFile) -> io::Result<()> {
        let unboxed = *self;
        let Self { data, offsets, ..} = unboxed;
        for offset in offsets {
            offset.write_to(file)?;
        }
        for block in data {
            let file_initial = file.written_bytes();
            let block_size = block.size();
            block.write_to(file)?;
            let mut written_size = file.written_bytes - file_initial;
            // Internally write an extra byte if size is odd.
            // This guarantes that the next element will
            // begin on a word-boundary.
            if written_size%2 == 1 { file.write_arbitrary_byte()? }
            if written_size != block_size {
                panic!(
                    "The number of bytes allocated by the Datablock ({}) is different from the number of bytes written to the file ({}).", 
                    block_size, written_size
                )
            }
        }
        
        Ok(())
    }
}

/// [`Datablock`] that consists of a list of bytes.
/// 
/// It is possible to store any block of data in a `ByteBlock`,
/// but that would require to know the [`Endianness`] of the file
/// beforehand, so the bytes are written in the correct order.
/// 
/// Using a [`Datablock`], on the other hand, allows to make use
/// of the functionality of an [`EndianFile`], so the data can be
/// written without worrying about the endianness.
/// 
/// # Examples
/// 
/// Creating a ByteBlock from a `Vec<u8>`:
/// ``` 
/// use tiff_encoder::*;
/// 
/// // A vector holding arbitrary u8 data.
/// // This is the data we want to store as a Byteblock.
/// let data_8bits: Vec<u8> = vec![0; 65536];
///
/// // Create an Offsets of a single Byteblock from the buffer.
/// // This is the value that can be used directly as an IFD entry value.
/// let byte_block = ByteBlock::single(data_8bits);
/// ```
/// 
/// Creating a ByteBlock from a `Vec<u32>`: 
/// ``` extern crate byteorder;
/// // Crate byteorder will be used to write 32-bit information in a 8-bit buffer.
/// use byteorder::io::WriteBytesExt;
/// 
/// use tiff_encoder::*;
/// 
/// 
/// // A vector holding arbitrary u32 data.
/// // This is the data we want to store as a Byteblock.
/// let data_32bits: Vec<u32> = vec![0; 65536];
///
/// // First, let's store the data in a u8 buffer.
/// let mut image_bytes = Vec::with_capacity(262144); // 65536*4 (each u32 has a size of 4 bytes)
/// for val in data_32bits {
///     // A little endian TIFF file is assumed in this example.
///     image_bytes.write_u32::<LittleEndian>(val).unwrap();
/// }
///
/// // Create an Offsets of a single Byteblock from the buffer.
/// // This is the value that can be used directly as an IFD entry value.
/// let byte_block = ByteBlock::single(image_bytes);
/// ```
/// 
/// 
/// [`Datablock`]: trait.Datablock.html
/// [`EndianFile`]: struct.EndianFile.html
/// [`Endianness`]: enum.Endianness.html
pub struct ByteBlock(pub Vec<u8>);
impl ByteBlock {
    /// Constructs an [`Offsets`] of `ByteBlock`s from a vector of
    /// vectors of bytes.
    /// 
    /// Each vector of bytes represents one `ByteBlock`.
    /// 
    /// [`Offsets`]: struct.Offsets.html
    pub fn offsets(blocks: Vec<Vec<u8>>) -> Offsets<ByteBlock> {
        Offsets::new(blocks.into_iter().map(|block| ByteBlock(block)).collect())
    }

    /// Constructs an [`Offsets`] from a vector of bytes.
    /// 
    /// This vector of bytes represents a single `ByteBlock`.
    /// 
    /// [`Offsets`]: struct.Offsets.html
    pub fn single(block: Vec<u8>) -> Offsets<ByteBlock> {
        ByteBlock::offsets(vec![block])
    }
}
impl Datablock for ByteBlock {
    fn size(&self) -> u32 {
        self.0.len() as u32
    }
    
    fn write_to(self, file: &mut EndianFile) -> io::Result<()> {
        file.write_all_u8(&self.0)?;
        Ok(())
    }
}

/// A list of values of any given [`TiffType`].
/// 
/// [`TiffType`]: tiff_type/trait.TiffType.html
pub struct TiffTypeValues<T: TiffType> {
    values: Vec<T>,
}
impl<T: TiffType + 'static> TiffTypeValues<T> {
    /// Creates a new instance of `TiffTypeValues` from a vector
    /// of instances of any given [`TiffType`].
    /// 
    /// [`TiffType`]: tiff_type/trait.TiffType.html
    pub fn new(values: Vec<T>) -> Self {
        if values.len() == 0 {
            panic!("Cannot create an empty instance of TiffTypeValues")
        }
        TiffTypeValues {
            values
        }
    }
}
impl<T: TiffType + 'static> FieldValues for TiffTypeValues<T> {
    fn count(&self) -> u32 {
        self.values.len() as u32
    }

    fn size(&self) -> u32 {
        T::size() * self.count()
    }

    fn allocate(self: Box<Self>, c: &mut Cursor) -> Box<AllocatedFieldValues> {
        let position = if self.size() <= 4 {
            None
        } else {
            // If the entry size is odd, it will need to allocate an extra byte
            // so that offsets continue to respect the word boundary
            let size = self.size() + self.size()%2;
            let pos = c.allocated_bytes();
            c.allocate(size);
            Some(pos)
        };
        
        Box::new(AllocatedTiffTypeValues {
            position,
            values: self.values,
        })
    }

}

/// Allocated form of `TiffTypeValues`
struct AllocatedTiffTypeValues<T: TiffType> {
    position: Option<u32>,
    values: Vec<T>,
}
impl<T: TiffType> AllocatedFieldValues for AllocatedTiffTypeValues<T> {
    fn count(&self) -> u32 {
        self.values.len() as u32
    }

    fn size(&self) -> u32 {
        T::size() * self.count()
    }

    fn position(&self) -> Option<u32> {
        self.position
    }

    fn type_id(&self) -> u16 {
        T::id()
    }

    fn write_to(self: Box<Self>, file: &mut EndianFile) -> io::Result<()> {
        let size = self.size();
        for value in self.values {
            let file_initial = file.written_bytes();
            value.write_to(file)?;
            let mut written_size = file.written_bytes - file_initial;
            if written_size != T::size() {
                panic!(
                    "The size indicated ({}) is different from the number of bytes the type has written to the file ({}).", 
                    T::size(), written_size
                )
            }
        }
       
        if size%2 == 1 && size > 4 {
            file.write_arbitrary_byte()?;
        }
        Ok(())
    }
}