1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#![cfg(feature = "with-tch")]

use super::*;
use image::{png::PngEncoder, ColorType};
use tch::{IndexOp, Kind, Tensor};

// macros

macro_rules! tensor_to_vec {
    ($tensor:ident, $ty:ident) => {
        unsafe {
            let numel = $tensor.numel();
            let mut data: Vec<$ty> = Vec::with_capacity(numel);
            let slice = slice::from_raw_parts_mut(data.as_mut_ptr(), numel);
            $tensor.copy_data(slice, numel);
            data.set_len(numel);
            data
        }
    };
}

macro_rules! tensor_to_r64_vec {
    ($tensor:ident, $ty:ident) => {{
        tensor_to_vec!($tensor, $ty)
            .into_iter()
            .map(|value| {
                let f64_value = value as f64;
                let r64_value = R64::try_new(f64_value).ok_or_else(|| Error::ConversionError {
                    desc: "non-finite floating point value found".into(),
                })?;
                Ok(r64_value)
            })
            .collect::<Result<Vec<_>, Error>>()
    }};
}

macro_rules! tensor_to_proto {
    ($tensor:ident, $ty:ident) => {{
        let values = tensor_to_vec!($tensor, $ty);
        let size = $tensor
            .size()
            .into_iter()
            .map(|sz| sz as usize)
            .collect::<Vec<_>>();
        TensorProtoInit { shape: Some(size) }.build_with_data(&values)
    }};
}

// auxiliary functions

fn normalized_tensor(tensor: &Tensor) -> Result<Tensor, Error> {
    let kind = tensor.f_kind()?;

    let normalized_tensor = match kind {
        Kind::Uint8 => tensor.shallow_clone(),
        Kind::Float | Kind::Double => {
            // determine the scale and offset by min/max values
            let valid_values_mask = tensor.f_isfinite()?;
            let valid_values = tensor.f_masked_select(&valid_values_mask)?;
            let min_value = f64::from(valid_values.f_min()?);
            let max_value = f64::from(valid_values.f_max()?);

            let (scale, offset) = if min_value >= 0.0 {
                let scale = 255.0 / max_value;
                let offset = 0.0;
                (scale, offset)
            } else {
                let scale = 127.0 / max_value.max(-min_value);
                let offset = 128.0;
                (scale, offset)
            };

            let normalized_tensor = tensor
                .f_mul1(scale)?
                .f_add1(offset)?
                .f_to_kind(Kind::Uint8)?;

            normalized_tensor
        }
        _ => {
            return Err(Error::ConversionError {
                desc: format!("the tensor with kind {:?} cannot converted to image", kind),
            });
        }
    };

    Ok(normalized_tensor)
}

fn guess_color_space_by_channels(channels: i64) -> Option<ColorSpace> {
    let color_space = match channels {
        1 => ColorSpace::Luma,
        3 => ColorSpace::Rgb,
        4 => ColorSpace::Rgba,
        _ => {
            return None;
        }
    };
    Some(color_space)
}

// to histogram

impl TryFrom<&Tensor> for HistogramProto {
    type Error = Error;

    fn try_from(from: &Tensor) -> Result<Self, Self::Error> {
        let kind = from.f_kind()?;
        let values = match kind {
            Kind::Uint8 => tensor_to_r64_vec!(from, u8)?,
            Kind::Int8 => tensor_to_r64_vec!(from, i8)?,
            Kind::Int16 => tensor_to_r64_vec!(from, i16)?,
            Kind::Int => tensor_to_r64_vec!(from, i32)?,
            Kind::Int64 => tensor_to_r64_vec!(from, i64)?,
            Kind::Float => tensor_to_r64_vec!(from, f32)?,
            Kind::Double => tensor_to_r64_vec!(from, f64)?,
            _ => {
                return Err(Error::ConversionError {
                    desc: format!("unsupported tensor kind {:?}", kind),
                })
            }
        };

        let histogram = Histogram::default();
        values.into_iter().for_each(|value| histogram.add(value));
        Ok(histogram.into())
    }
}

impl TryFrom<Tensor> for HistogramProto {
    type Error = Error;

    fn try_from(from: Tensor) -> Result<Self, Self::Error> {
        Self::try_from(&from)
    }
}

// to TensorProto

impl TryFrom<&Tensor> for TensorProto {
    type Error = Error;

    fn try_from(from: &Tensor) -> Result<Self, Self::Error> {
        // let size = from.size();
        let kind = from.f_kind()?;
        let proto = match kind {
            Kind::Uint8 => tensor_to_proto!(from, u8),
            Kind::Int8 => tensor_to_proto!(from, i8),
            Kind::Int16 => tensor_to_proto!(from, i16),
            Kind::Int => tensor_to_proto!(from, i32),
            Kind::Int64 => tensor_to_proto!(from, i64),
            Kind::Float => tensor_to_proto!(from, f32),
            Kind::Double => tensor_to_proto!(from, f64),
            _ => {
                return Err(Error::ConversionError {
                    desc: format!("unsupported tensor kind {:?}", kind),
                })
            }
        };

        Ok(proto)
    }
}

impl TryFrom<Tensor> for TensorProto {
    type Error = Error;
    fn try_from(from: Tensor) -> Result<Self, Self::Error> {
        Self::try_from(&from)
    }
}

// to Image
impl TryFrom<&Tensor> for Image {
    type Error = Error;

    fn try_from(from: &Tensor) -> Result<Self, Self::Error> {
        let size = from.size();

        // verify tensor shape
        let (_channels, height, width, color_space) = match size.as_slice() {
            &[channels, height, width] => {
                let color_space = guess_color_space_by_channels(channels).ok_or_else(|| Error::ConversionError { desc: format!("cannot convert tensor with shape {:?} to image, it must have 1, 3 or 4 channels", size)} )?;
                (channels, height, width, color_space)
            }
            _ => {
                return Err(Error::ConversionError {
                        desc: format!("cannot convert tensor with shape {:?} to image, the shape must have exactly 3 dimensions", size)
                    });
            }
        };

        // CHW to HWC
        let hwc_tensor = from
            .f_permute(&[1, 2, 0])
            .map_err(|err| Error::ConversionError {
                desc: format!("tch error: {:?}", err),
            })?;

        // normalize values to [0, 255]
        let normalized_tensor = normalized_tensor(&hwc_tensor)?;

        // encode image
        let encoded_image_string = {
            let samples = tensor_to_vec!(normalized_tensor, u8);
            let color_type = match color_space {
                ColorSpace::Luma => ColorType::L8,
                ColorSpace::Rgb => ColorType::Rgb8,
                ColorSpace::Rgba => ColorType::Rgba8,
                _ => unreachable!("please report bug"),
            };
            let mut cursor = Cursor::new(vec![]);
            PngEncoder::new(&mut cursor)
                .encode(&samples, width as u32, height as u32, color_type)
                .map_err(|err| Error::ConversionError {
                    desc: format!("{:?}", err),
                })?;
            cursor.into_inner()
        };

        Ok(Image {
            height: height as i32,
            width: width as i32,
            colorspace: color_space as i32,
            encoded_image_string,
        })
    }
}

impl TryFrom<Tensor> for Image {
    type Error = Error;
    fn try_from(from: Tensor) -> Result<Self, Self::Error> {
        Self::try_from(&from)
    }
}

// to Vec<Image>
impl TryInfoImageList for &Tensor {
    type Error = Error;

    fn try_into_image_list(self) -> Result<Vec<Image>, Self::Error> {
        let size = self.size();

        // verify tensor shape
        let batch_size = match size.as_slice() {
            &[batch_size, channels, _, _] => {
                if ![1, 3, 4].contains(&channels) {
                    return Err(Error::ConversionError {
                            desc: format!("cannot convert tensor with shape {:?} to list of images, the channel size must be one of 1, 3, 4", size)
                        });
                }
                batch_size
            }
            _ => {
                return Err(Error::ConversionError {
                        desc: format!("cannot convert tensor with shape {:?} to list of images, the shape must have exactly 4 dimensions", size)
                    });
            }
        };

        let images = (0..batch_size)
            .map(|batch_index| {
                let sub_tensor = self.i(batch_index);
                let image = Image::try_from(sub_tensor)?;
                Ok(image)
            })
            .collect::<Result<Vec<_>, Error>>()?;

        Ok(images)
    }
}

impl TryInfoImageList for Tensor {
    type Error = Error;
    fn try_into_image_list(self) -> Result<Vec<Image>, Self::Error> {
        TryInfoImageList::try_into_image_list(&self)
    }
}