1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//! Functions and types relating to textures.

use std::cell::Cell;
use std::path::Path;
use std::rc::Rc;

use crate::error::Result;
use crate::graphics::{self, DrawParams, ImageData, Rectangle};
use crate::platform::{GraphicsDevice, RawTexture};
use crate::Context;

#[derive(Debug)]
pub(crate) struct TextureSharedData {
    pub(crate) handle: RawTexture,
    filter_mode: Cell<FilterMode>,
}

impl PartialEq for TextureSharedData {
    fn eq(&self, other: &TextureSharedData) -> bool {
        // filter_mode should always match what's set on the GPU,
        // so we can ignore it for equality checks.

        self.handle.eq(&other.handle)
    }
}

/// A texture, held in GPU memory.
///
/// The data can be stored in a variety of formats, as represented by the
/// [`TextureFormat`] enum.
///
/// # Supported File Formats
///
/// Images can be decoded from various common file formats via the [`new`](Texture::new)
/// and [`from_encoded`](Texture::from_encoded) constructors. Individual
/// decoders can be enabled or disabled via Cargo feature flags.
///
/// | Format | Cargo feature | Enabled by default? |
/// |-|-|-|
/// | PNG | `texture_png` | Yes |
/// | JPEG | `texture_jpeg` | Yes |
/// | GIF | `texture_gif` | Yes |
/// | BMP | `texture_bmp` | Yes |
/// | TIFF | `texture_tiff` | No |
/// | TGA | `texture_tga` | No |
/// | WebP | `texture_webp` | No |
/// | ICO | `texture_ico` | No |
/// | PNM | `texture_pnm` | No |
/// | DDS/DXT | `texture_dds` | No |
///
/// # Performance
///
/// Creating a texture is quite an expensive operation, as it involves 'uploading' the texture
/// data to the GPU. Try to reuse textures, rather than recreating them every frame.
///
/// You can clone a texture cheaply, as it is a [reference-counted](https://doc.rust-lang.org/std/rc/struct.Rc.html)
/// handle to a GPU resource. However, this does mean that modifying a texture (e.g.
/// setting the filter mode) will also affect any clones that exist of it.
///
/// # Examples
///
/// The [`texture`](https://github.com/17cupsofcoffee/tetra/blob/main/examples/texture.rs)
/// example demonstrates how to draw a simple texture.
#[derive(Debug, Clone, PartialEq)]
pub struct Texture {
    pub(crate) data: Rc<TextureSharedData>,
}

impl Texture {
    /// Creates a new texture from the given file.
    ///
    /// The format will be determined based on the file extension.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned
    /// if the underlying graphics API encounters an error.
    /// * [`TetraError::FailedToLoadAsset`](crate::TetraError::FailedToLoadAsset) will be
    /// returned if the file could not be loaded.
    /// * [`TetraError::InvalidTexture`](crate::TetraError::InvalidTexture) will be returned
    /// if the texture data was invalid.
    pub fn new<P>(ctx: &mut Context, path: P) -> Result<Texture>
    where
        P: AsRef<Path>,
    {
        let data = ImageData::new(path)?;
        Texture::from_image_data(ctx, &data)
    }

    /// Creates a new texture from a slice of pixel data.
    ///
    /// This is useful if you wish to create a texture at runtime.
    ///
    /// This method requires you to provide enough data to fill the texture.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned
    /// if the underlying graphics API encounters an error.
    /// * [`TetraError::NotEnoughData`](crate::TetraError::NotEnoughData) will be returned
    /// if not enough data is provided to fill the texture. This is to prevent the
    /// graphics API from trying to read uninitialized memory.
    pub fn from_data(
        ctx: &mut Context,
        width: i32,
        height: i32,
        format: TextureFormat,
        data: &[u8],
    ) -> Result<Texture> {
        Texture::with_device(
            &mut ctx.device,
            width,
            height,
            data,
            format,
            ctx.graphics.default_filter_mode,
        )
    }

    /// Creates a new texture from a slice of data, encoded in one of Tetra's supported
    /// file formats (except for TGA).
    ///
    /// This is useful in combination with [`include_bytes`](std::include_bytes), as it
    /// allows you to include your textures directly in the binary.
    ///
    /// The format will be determined based on the 'magic bytes' at the beginning of the
    /// data. This should be reasonably reliable, but a `from_data_with_format` function
    /// might have to be added later. Note that TGA files do not have recognizable magic
    /// bytes, so this function will not recognize them.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be
    /// returned if the underlying graphics API encounters an error.
    /// * [`TetraError::InvalidTexture`](crate::TetraError::InvalidTexture) will be
    /// returned if the texture data was invalid.
    pub fn from_encoded(ctx: &mut Context, data: &[u8]) -> Result<Texture> {
        let data = ImageData::from_encoded(data)?;
        Texture::from_image_data(ctx, &data)
    }

    /// Creates a new texture from an [`ImageData`].
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned
    /// if the underlying graphics API encounters an error.
    pub fn from_image_data(ctx: &mut Context, data: &ImageData) -> Result<Texture> {
        Texture::from_data(
            ctx,
            data.width(),
            data.height(),
            TextureFormat::Rgba8,
            data.as_bytes(),
        )
    }

    pub(crate) fn from_raw(handle: RawTexture, filter_mode: FilterMode) -> Texture {
        Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(filter_mode),
            }),
        }
    }

    pub(crate) fn with_device(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        data: &[u8],
        format: TextureFormat,
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        let handle = device.new_texture(width, height, format, filter_mode)?;

        device.set_texture_data(&handle, data, 0, 0, width, height)?;

        Ok(Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(filter_mode),
            }),
        })
    }

    pub(crate) fn with_device_empty(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        // TODO: There's probably more efficient ways of doing this, but it seems fast enough
        // for now.
        let data = vec![0; (width * height * 4) as usize];

        Texture::with_device(
            device,
            width,
            height,
            &data,
            TextureFormat::Rgba8,
            filter_mode,
        )
    }

    /// Draws the texture to the screen (or to a canvas, if one is enabled).
    pub fn draw<P>(&self, ctx: &mut Context, params: P)
    where
        P: Into<DrawParams>,
    {
        let params = params.into();

        graphics::set_texture(ctx, self);
        graphics::push_quad(
            ctx,
            0.0,
            0.0,
            self.width() as f32,
            self.height() as f32,
            0.0,
            0.0,
            1.0,
            1.0,
            &params,
        );
    }

    /// Draws a region of the texture to the screen (or to a canvas, if one is enabled).
    pub fn draw_region<P>(&self, ctx: &mut Context, region: Rectangle, params: P)
    where
        P: Into<DrawParams>,
    {
        let params = params.into();

        let texture_width = self.width() as f32;
        let texture_height = self.height() as f32;

        graphics::set_texture(ctx, self);
        graphics::push_quad(
            ctx,
            0.0,
            0.0,
            region.width,
            region.height,
            region.x / texture_width,
            region.y / texture_height,
            region.right() / texture_width,
            region.bottom() / texture_height,
            &params,
        );
    }

    /// Draws a region of the texture by splitting it into nine slices, allowing it to be stretched or
    /// squashed without distorting the borders.
    pub fn draw_nine_slice<P>(
        &self,
        ctx: &mut Context,
        config: &NineSlice,
        width: f32,
        height: f32,
        params: P,
    ) where
        P: Into<DrawParams>,
    {
        let params = params.into();

        let texture_width = self.width() as f32;
        let texture_height = self.height() as f32;

        let x1 = 0.0;
        let y1 = 0.0;
        let x2 = config.left;
        let y2 = config.top;
        let x3 = width - config.right;
        let y3 = height - config.bottom;
        let x4 = width;
        let y4 = height;

        let u1 = config.region.x / texture_width;
        let v1 = config.region.y / texture_height;
        let u2 = (config.region.x + config.left) / texture_width;
        let v2 = (config.region.y + config.top) / texture_height;
        let u3 = (config.region.x + config.region.width - config.right) / texture_width;
        let v3 = (config.region.y + config.region.height - config.bottom) / texture_height;
        let u4 = (config.region.x + config.region.width) / texture_width;
        let v4 = (config.region.y + config.region.height) / texture_height;

        graphics::set_texture(ctx, self);

        // Top left
        graphics::push_quad(ctx, x1, y1, x2, y2, u1, v1, u2, v2, &params);

        // Top
        graphics::push_quad(ctx, x2, y1, x3, y2, u2, v1, u3, v2, &params);

        // Top right
        graphics::push_quad(ctx, x3, y1, x4, y2, u3, v1, u4, v2, &params);

        // Left
        graphics::push_quad(ctx, x1, y2, x2, y3, u1, v2, u2, v3, &params);

        // Center
        graphics::push_quad(ctx, x2, y2, x3, y3, u2, v2, u3, v3, &params);

        // Right
        graphics::push_quad(ctx, x3, y2, x4, y3, u3, v2, u4, v3, &params);

        // Bottom left
        graphics::push_quad(ctx, x1, y3, x2, y4, u1, v3, u2, v4, &params);

        // Bottom
        graphics::push_quad(ctx, x2, y3, x3, y4, u2, v3, u3, v4, &params);

        // Bottom right
        graphics::push_quad(ctx, x3, y3, x4, y4, u3, v3, u4, v4, &params);
    }

    /// Returns the width of the texture.
    pub fn width(&self) -> i32 {
        self.data.handle.width()
    }

    /// Returns the height of the texture.
    pub fn height(&self) -> i32 {
        self.data.handle.height()
    }

    /// Returns the size of the texture.
    pub fn size(&self) -> (i32, i32) {
        (self.data.handle.width(), self.data.handle.height())
    }

    /// Returns the data format of the texture.
    pub fn format(&self) -> TextureFormat {
        self.data.handle.format()
    }

    /// Returns the filter mode being used by the texture.
    pub fn filter_mode(&self) -> FilterMode {
        self.data.filter_mode.get()
    }

    /// Sets the filter mode that should be used by the texture.
    pub fn set_filter_mode(&mut self, ctx: &mut Context, filter_mode: FilterMode) {
        ctx.device
            .set_texture_filter_mode(&self.data.handle, filter_mode);

        self.data.filter_mode.set(filter_mode);
    }

    /// Gets the texture's data from the GPU.
    ///
    /// This can be useful if you need to do some image processing on the CPU,
    /// or if you want to output the image data somewhere. This is a fairly
    /// slow operation, so avoid doing it too often!
    ///
    /// The returned [`ImageData`] will have the same format as the texture itself.
    pub fn get_data(&self, ctx: &mut Context) -> ImageData {
        // TODO: Should there be a version of this that converts to a different format?

        let (width, height) = self.size();
        let buffer = ctx.device.get_texture_data(&self.data.handle);

        ImageData::from_data(width, height, self.format(), buffer)
            .expect("buffer should be exact size for image")
    }

    /// Writes pixel data to a specified region of the texture.
    ///
    /// The data will be interpreted based on the [`TextureFormat`] of the texture.
    ///
    /// This method requires you to provide enough data to fill the target rectangle.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// If you want to overwrite the entire texture, the [`replace_data`](Self::replace_data)
    /// method offers a more concise way of doing this.
    ///
    /// # Errors
    ///
    /// * [`TetraError::NotEnoughData`](crate::TetraError::NotEnoughData) will be returned if
    /// not enough data is provided to fill the target rectangle. This is to prevent the
    /// graphics API from trying to read uninitialized memory.
    ///
    /// # Panics
    ///
    /// Panics if any part of the target rectangle is outside the bounds of the texture.
    pub fn set_data(
        &self,
        ctx: &mut Context,
        x: i32,
        y: i32,
        width: i32,
        height: i32,
        data: &[u8],
    ) -> Result {
        ctx.device
            .set_texture_data(&self.data.handle, data, x, y, width, height)
    }

    /// Overwrites the entire texture with new RGBA pixel data.
    ///
    /// This method requires you to provide enough data to fill the texture.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// If you only want to write to a subsection of the texture, use the [`set_data`](Self::set_data)
    /// method instead.
    ///
    /// # Errors
    ///
    /// * [`TetraError::NotEnoughData`](crate::TetraError::NotEnoughData) will be returned if not
    /// enough data is provided to fill the texture. This is to prevent the graphics API from
    /// trying to read uninitialized memory.
    pub fn replace_data(&self, ctx: &mut Context, data: &[u8]) -> Result {
        let (width, height) = self.size();
        self.set_data(ctx, 0, 0, width, height, data)
    }
}

/// In-memory data formats for textures.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum TextureFormat {
    /// RGBA data, with 8 bits per channel (32 bits per pixel).
    ///
    /// This is the default texture format.
    Rgba8,

    /// Red channel data (8 bits per pixel).
    R8,

    /// Red and green channel data, with 8 bits per channel (16 bits per pixel).
    Rg8,

    /// Floating point RGBA data, with 16 bits per channel (64 bits per pixel).
    Rgba16F,
}

impl TextureFormat {
    /// Returns the number of bytes per pixel for this format.
    pub fn stride(self) -> usize {
        match self {
            TextureFormat::Rgba8 => 4,
            TextureFormat::R8 => 1,
            TextureFormat::Rg8 => 2,
            TextureFormat::Rgba16F => 8,
        }
    }
}

/// Filtering algorithms that can be used when scaling an image.
///
/// Tetra currently defaults to using `Nearest` for all newly created textures.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum FilterMode {
    /// Nearest-neighbor interpolation. This preserves hard edges and details, but may look pixelated.
    ///
    /// If you're using pixel art, this is probably the scaling mode you should use.
    Nearest,

    /// Linear interpolation. This smooths images when scaling them up or down.
    Linear,
}

/// Information on how to slice a texture so that it can be stretched or squashed without
/// distorting the borders.
///
/// This can be used with [`Texture::draw_nine_slice`] to easily draw things like UI panels.
///
/// # Examples
///
/// The [`nineslice`](https://github.com/17cupsofcoffee/tetra/blob/main/examples/nineslice.rs)
/// example demonstrates how to draw a `NineSlice` panel.
#[derive(Debug, Clone)]
pub struct NineSlice {
    /// The region of the texture that should be used.
    pub region: Rectangle,

    /// The offset of the border on the left side.
    pub left: f32,

    /// The offset of the border on the right side.
    pub right: f32,

    /// The offset of the border on the top side.
    pub top: f32,

    /// The offset of the border on the bottom side.
    pub bottom: f32,
}

impl NineSlice {
    /// Creates a new nine slice configuration with the given offsets.
    pub fn new(region: Rectangle, left: f32, right: f32, top: f32, bottom: f32) -> NineSlice {
        NineSlice {
            region,
            left,
            right,
            top,
            bottom,
        }
    }

    /// Creates a new nine slice configuration, using the same offset for all edges.
    pub fn with_border(region: Rectangle, border: f32) -> NineSlice {
        NineSlice {
            region,
            left: border,
            right: border,
            top: border,
            bottom: border,
        }
    }
}