1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
//! Functions and types relating to rendering.
//!
//! This module implements a (hopefully!) efficent quad renderer, which will queue up
//! drawing operations until it is absolutely necessary to send them to the graphics
//! hardware. This allows us to minimize the number of draw calls made, speeding up
//! rendering.

pub mod animation;
mod camera;
mod canvas;
mod color;
mod drawparams;
pub mod mesh;
mod rectangle;
pub mod scaling;
mod shader;
pub mod text;
mod texture;

pub use camera::*;
pub use canvas::*;
pub use color::*;
pub use drawparams::*;
pub use rectangle::*;
pub use shader::*;
pub use texture::*;

use crate::error::Result;
use crate::math::{FrustumPlanes, Mat4, Vec2};
use crate::platform::{GraphicsDevice, RawFramebuffer, RawIndexBuffer, RawVertexBuffer};
use crate::window;
use crate::Context;

use self::mesh::{BufferUsage, Vertex, VertexWinding};

const MAX_SPRITES: usize = 2048;
const MAX_VERTICES: usize = MAX_SPRITES * 4; // Cannot be greater than 32767!
const MAX_INDICES: usize = MAX_SPRITES * 6;
const INDEX_ARRAY: [u32; 6] = [0, 1, 2, 2, 3, 0];

#[derive(PartialEq)]
pub(crate) enum ActiveTexture {
    Default,
    User(Texture),
}

#[derive(PartialEq)]
pub(crate) enum ActiveShader {
    Default,
    User(Shader),
}

#[derive(PartialEq)]
pub(crate) enum ActiveCanvas {
    Window,
    User(Canvas),
}

pub(crate) struct GraphicsContext {
    vertex_buffer: RawVertexBuffer,
    index_buffer: RawIndexBuffer,

    texture: ActiveTexture,
    default_texture: Texture,
    default_filter_mode: FilterMode,

    shader: ActiveShader,
    default_shader: Shader,

    canvas: ActiveCanvas,
    resolve_framebuffer: Option<RawFramebuffer>,

    winding: VertexWinding,
    projection_matrix: Mat4<f32>,
    transform_matrix: Mat4<f32>,

    vertex_data: Vec<Vertex>,
    element_count: usize,

    blend_mode: BlendMode,
}

impl GraphicsContext {
    pub(crate) fn new(
        device: &mut GraphicsDevice,
        window_width: i32,
        window_height: i32,
    ) -> Result<GraphicsContext> {
        let vertex_buffer = device.new_vertex_buffer(MAX_VERTICES, 8, BufferUsage::Dynamic)?;
        let index_buffer = device.new_index_buffer(MAX_INDICES, BufferUsage::Static)?;

        let indices: Vec<u32> = INDEX_ARRAY
            .iter()
            .cycle()
            .take(MAX_INDICES)
            .enumerate()
            .map(|(i, vertex)| vertex + i as u32 / 6 * 4)
            .collect();

        device.set_index_buffer_data(&index_buffer, &indices, 0);

        let default_texture =
            Texture::with_device(device, 1, 1, &[255, 255, 255, 255], FilterMode::Nearest)?;

        let default_filter_mode = FilterMode::Nearest;

        let default_shader = Shader::with_device(
            device,
            shader::DEFAULT_VERTEX_SHADER,
            shader::DEFAULT_FRAGMENT_SHADER,
        )?;

        Ok(GraphicsContext {
            vertex_buffer,
            index_buffer,

            texture: ActiveTexture::Default,
            default_texture,
            default_filter_mode,

            shader: ActiveShader::Default,
            default_shader,

            canvas: ActiveCanvas::Window,
            resolve_framebuffer: None,

            winding: VertexWinding::CounterClockwise,
            projection_matrix: ortho(window_width as f32, window_height as f32, false),
            transform_matrix: Mat4::identity(),

            vertex_data: Vec::with_capacity(MAX_VERTICES),
            element_count: 0,

            blend_mode: BlendMode::default(),
        })
    }
}

/// Clears the screen (or a canvas, if one is enabled) to the specified color.
pub fn clear(ctx: &mut Context, color: Color) {
    ctx.device.clear(color.r, color.g, color.b, color.a);
}

#[allow(clippy::too_many_arguments)]
pub(crate) fn push_quad(
    ctx: &mut Context,
    x1: f32,
    y1: f32,
    x2: f32,
    y2: f32,
    mut u1: f32,
    mut v1: f32,
    mut u2: f32,
    mut v2: f32,
    params: &DrawParams,
) {
    // This function is a bit hairy, but it's more performant than doing the matrix math every
    // frame by a *lot* (at least going by the BunnyMark example). The logic is roughly based
    // on how FNA and LibGDX implement their spritebatches.
    //
    // TODO: This function really needs cleaning up before it can be exposed publicly.

    if ctx.graphics.element_count + 6 > MAX_INDICES {
        flush(ctx);
    }

    let mut fx = (x1 - params.origin.x) * params.scale.x;
    let mut fy = (y1 - params.origin.y) * params.scale.y;
    let mut fx2 = (x2 - params.origin.x) * params.scale.x;
    let mut fy2 = (y2 - params.origin.y) * params.scale.y;

    if fx2 < fx {
        std::mem::swap(&mut fx, &mut fx2);
        std::mem::swap(&mut u1, &mut u2);
    }

    if fy2 < fy {
        std::mem::swap(&mut fy, &mut fy2);
        std::mem::swap(&mut v1, &mut v2);
    }

    // Branching here might be a bit of a premature optimization...
    let (ox1, oy1, ox2, oy2, ox3, oy3, ox4, oy4) = if params.rotation == 0.0 {
        (
            params.position.x + fx,
            params.position.y + fy,
            params.position.x + fx,
            params.position.y + fy2,
            params.position.x + fx2,
            params.position.y + fy2,
            params.position.x + fx2,
            params.position.y + fy,
        )
    } else {
        let sin = params.rotation.sin();
        let cos = params.rotation.cos();
        (
            params.position.x + (cos * fx) - (sin * fy),
            params.position.y + (sin * fx) + (cos * fy),
            params.position.x + (cos * fx) - (sin * fy2),
            params.position.y + (sin * fx) + (cos * fy2),
            params.position.x + (cos * fx2) - (sin * fy2),
            params.position.y + (sin * fx2) + (cos * fy2),
            params.position.x + (cos * fx2) - (sin * fy),
            params.position.y + (sin * fx2) + (cos * fy),
        )
    };

    ctx.graphics.vertex_data.extend_from_slice(&[
        Vertex::new(Vec2::new(ox1, oy1), Vec2::new(u1, v1), params.color),
        Vertex::new(Vec2::new(ox2, oy2), Vec2::new(u1, v2), params.color),
        Vertex::new(Vec2::new(ox3, oy3), Vec2::new(u2, v2), params.color),
        Vertex::new(Vec2::new(ox4, oy4), Vec2::new(u2, v1), params.color),
    ]);

    ctx.graphics.element_count += 6;
}

pub(crate) fn set_texture(ctx: &mut Context, texture: &Texture) {
    set_texture_ex(ctx, ActiveTexture::User(texture.clone()));
}

pub(crate) fn set_texture_ex(ctx: &mut Context, texture: ActiveTexture) {
    if texture != ctx.graphics.texture {
        flush(ctx);
        ctx.graphics.texture = texture;
    }
}

/// Sets the blend mode used for future drawing operations.
///
/// The blend mode will be used to determine how drawn content will be blended
/// with the screen (or with a [`Canvas`], if one is active).
pub fn set_blend_mode(ctx: &mut Context, blend_mode: BlendMode) {
    if blend_mode != ctx.graphics.blend_mode {
        flush(ctx);
        ctx.graphics.blend_mode = blend_mode;
    }
    ctx.device.set_blend_mode(blend_mode);
}

/// Resets the blend mode to the default.
pub fn reset_blend_mode(ctx: &mut Context) {
    set_blend_mode(ctx, Default::default());
}

/// Sets the shader that is currently being used for rendering.
///
/// If the shader is different from the one that is currently in use, this will trigger a
/// [`flush`] to the graphics hardware - try to avoid shader swapping as
/// much as you can.
pub fn set_shader(ctx: &mut Context, shader: &Shader) {
    set_shader_ex(ctx, ActiveShader::User(shader.clone()));
}

/// Sets the renderer back to using the default shader.
pub fn reset_shader(ctx: &mut Context) {
    set_shader_ex(ctx, ActiveShader::Default);
}

pub(crate) fn set_shader_ex(ctx: &mut Context, shader: ActiveShader) {
    if shader != ctx.graphics.shader {
        flush(ctx);
        ctx.graphics.shader = shader;
    }
}

/// Sets the renderer to redirect all drawing commands to the specified canvas.
///
/// If the canvas is different from the one that is currently in use, this will trigger a
/// [`flush`] to the graphics hardware.
pub fn set_canvas(ctx: &mut Context, canvas: &Canvas) {
    set_canvas_ex(ctx, ActiveCanvas::User(canvas.clone()));
}

/// Sets the renderer back to drawing to the screen directly.
pub fn reset_canvas(ctx: &mut Context) {
    set_canvas_ex(ctx, ActiveCanvas::Window);
}

pub(crate) fn set_canvas_ex(ctx: &mut Context, canvas: ActiveCanvas) {
    if canvas != ctx.graphics.canvas {
        flush(ctx);
        resolve_canvas(ctx);

        ctx.graphics.canvas = canvas;

        match &ctx.graphics.canvas {
            ActiveCanvas::Window => {
                let (width, height) = window::get_size(ctx);

                ctx.graphics.projection_matrix = ortho(width as f32, height as f32, false);

                ctx.device.bind_framebuffer(None);
                ctx.device.front_face(ctx.graphics.winding);
                ctx.device.viewport(0, 0, width, height);
            }
            ActiveCanvas::User(r) => {
                let (width, height) = r.size();

                ctx.graphics.projection_matrix = ortho(width as f32, height as f32, true);

                ctx.device.bind_framebuffer(Some(&r.framebuffer));
                ctx.device.front_face(ctx.graphics.winding.flipped());
                ctx.device.viewport(0, 0, width, height);
            }
        }
    }
}

fn resolve_canvas(ctx: &mut Context) {
    if let ActiveCanvas::User(c) = &ctx.graphics.canvas {
        if c.multisample.is_some() {
            // This is lazily initialized, to avoid overhead for people not using MSAA.
            if ctx.graphics.resolve_framebuffer.is_none() {
                ctx.graphics.resolve_framebuffer =
                    Some(ctx.device.new_framebuffer().expect("TODO"));
            }

            let resolve_framebuffer = ctx.graphics.resolve_framebuffer.as_ref().unwrap();

            ctx.device.attach_texture_to_framebuffer(
                &resolve_framebuffer,
                &c.texture.data.handle,
                false,
            );

            ctx.device.blit_framebuffer(
                &c.framebuffer,
                &resolve_framebuffer,
                c.width(),
                c.height(),
            );
        }
    }
}

/// Sends queued data to the graphics hardware.
///
/// You usually will not have to call this manually, as the graphics API will
/// automatically flush when necessary. Try to keep flushing to a minimum,
/// as this will reduce the number of draw calls made to the
/// graphics device.
pub fn flush(ctx: &mut Context) {
    if !ctx.graphics.vertex_data.is_empty() {
        let texture = match &ctx.graphics.texture {
            ActiveTexture::Default => return,
            ActiveTexture::User(t) => t,
        };

        let shader = match &ctx.graphics.shader {
            ActiveShader::Default => &ctx.graphics.default_shader,
            ActiveShader::User(s) => s,
        };

        // TODO: Failing to apply the defaults should be handled more gracefully than this,
        // but we can't do that without breaking changes.
        let _ = shader.set_default_uniforms(
            &mut ctx.device,
            ctx.graphics.projection_matrix * ctx.graphics.transform_matrix,
            Color::WHITE,
        );

        ctx.device.cull_face(true);

        // Because canvas rendering is effectively done upside-down, the winding order is the opposite
        // of what you'd expect in that case.
        ctx.device.front_face(match &ctx.graphics.canvas {
            ActiveCanvas::Window => VertexWinding::CounterClockwise,
            ActiveCanvas::User(_) => VertexWinding::Clockwise,
        });

        ctx.device.set_vertex_buffer_data(
            &ctx.graphics.vertex_buffer,
            bytemuck::cast_slice(&ctx.graphics.vertex_data),
            0,
        );

        ctx.device.draw_elements(
            &ctx.graphics.vertex_buffer,
            &ctx.graphics.index_buffer,
            &texture.data.handle,
            &shader.data.handle,
            0,
            ctx.graphics.element_count,
        );

        ctx.graphics.vertex_data.clear();
        ctx.graphics.element_count = 0;
    }
}

/// Presents the result of drawing commands to the screen.
///
/// If any custom shaders/canvases are set, this function will unset them -
/// don't rely on the state of one render carrying over to the next!
///
/// You usually will not have to call this manually, as it is called for you at the end of every
/// frame. Note that calling it will trigger a [`flush`] to the graphics hardware.
pub fn present(ctx: &mut Context) {
    flush(ctx);

    ctx.window.swap_buffers();
}

/// Returns the filter mode that will be used by newly created textures and canvases.
pub fn get_default_filter_mode(ctx: &Context) -> FilterMode {
    ctx.graphics.default_filter_mode
}

/// Sets the filter mode that will be used by newly created textures and canvases.
pub fn set_default_filter_mode(ctx: &mut Context, filter_mode: FilterMode) {
    ctx.graphics.default_filter_mode = filter_mode;
}

/// Information about the device currently being used to render graphics.
#[derive(Debug, Clone)]
pub struct GraphicsDeviceInfo {
    /// The name of the company responsible for the OpenGL implementation.
    pub vendor: String,

    /// The name of the renderer. This usually corresponds to the name
    /// of the physical device.
    pub renderer: String,

    /// The version of OpenGL that is being used.
    pub opengl_version: String,

    /// The version of GLSL that is being used.
    pub glsl_version: String,
}

/// Retrieves information about the device currently being used to render graphics.
///
/// This may be useful for debugging/logging purposes.
pub fn get_device_info(ctx: &Context) -> GraphicsDeviceInfo {
    GraphicsDeviceInfo {
        vendor: ctx.device.get_vendor(),
        renderer: ctx.device.get_renderer(),
        opengl_version: ctx.device.get_version(),
        glsl_version: ctx.device.get_shading_language_version(),
    }
}

/// Returns the current transform matrix.
pub fn get_transform_matrix(ctx: &Context) -> Mat4<f32> {
    ctx.graphics.transform_matrix
}

/// Sets the transform matrix.
///
/// This can be used to apply global transformations to subsequent draw calls.
pub fn set_transform_matrix(ctx: &mut Context, matrix: Mat4<f32>) {
    flush(ctx);

    ctx.graphics.transform_matrix = matrix;
}

/// Resets the transform matrix.
///
/// This is a shortcut for calling [`graphics::set_transform_matrix(ctx, Mat4::identity())`](set_transform_matrix).
pub fn reset_transform_matrix(ctx: &mut Context) {
    set_transform_matrix(ctx, Mat4::identity());
}

/// Sets the scissor rectangle.
///
/// While the scissor is enabled, any rendering that falls outside the specified rectangle of
/// the screen (or the current canvas, if one is active) will be be ignored. This includes
/// calls to [`clear`]. This can be useful for things like UI rendering.
///
/// To disable the scissor, call [`reset_scissor`].
///
/// Note that the position/size of the scissor rectangle is not affected by the transform
/// matrix - it always operates in screen/canvas co-ordinates.
pub fn set_scissor(ctx: &mut Context, scissor_rect: Rectangle<i32>) {
    flush(ctx);

    match &ctx.graphics.canvas {
        ActiveCanvas::Window => {
            let viewport_height = window::get_height(ctx);

            // OpenGL uses bottom-left co-ordinates, while Tetra uses
            // top-left co-ordinates - to present a consistent API, we
            // flip the Y component here.
            ctx.device.scissor(
                scissor_rect.x,
                viewport_height - (scissor_rect.y + scissor_rect.height),
                scissor_rect.width,
                scissor_rect.height,
            );
        }

        ActiveCanvas::User(_) => {
            // Canvas rendering is effectively done upside-down, so we don't
            // need to flip the co-ordinates here.
            ctx.device.scissor(
                scissor_rect.x,
                scissor_rect.y,
                scissor_rect.width,
                scissor_rect.height,
            );
        }
    }

    ctx.device.scissor_test(true);
}

/// Disables the scissor rectangle.
pub fn reset_scissor(ctx: &mut Context) {
    flush(ctx);

    ctx.device.scissor_test(false);
}

pub(crate) fn set_viewport_size(
    ctx: &mut Context,
    width: i32,
    height: i32,
    pixel_width: i32,
    pixel_height: i32,
) {
    if let ActiveCanvas::Window = ctx.graphics.canvas {
        ctx.graphics.projection_matrix = ortho(width as f32, height as f32, false);
        ctx.device.viewport(0, 0, pixel_width, pixel_height);
    }
}

pub(crate) fn ortho(width: f32, height: f32, flipped: bool) -> Mat4<f32> {
    Mat4::orthographic_rh_no(FrustumPlanes {
        left: 0.0,
        right: width,
        bottom: if flipped { 0.0 } else { height },
        top: if flipped { height } else { 0.0 },
        near: -1.0,
        far: 1.0,
    })
}

// blend mode logic is taken from LÖVE:
// https://github.com/love2d/love/blob/master/src/modules/graphics/opengl/Graphics.cpp#L1234

/// The different ways of blending colors.
///
/// The active blend mode will be used to determine how drawn content will be blended
/// with the screen (or with a [`Canvas`], if one is active).
///
/// For modes where the alpha component of the color can affect the output, an
/// additional [`BlendAlphaMode`] parameter is provided, which determines if
/// the colour should be multiplied by its alpha before blending.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BlendMode {
    /// The alpha of the drawn content will determine its opacity.
    ///
    /// This is the default behaviour.
    Alpha(BlendAlphaMode),

    /// The pixel colors of the drawn content will be added to the pixel colors
    /// already in the target. The target's alpha will not be affected.
    Add(BlendAlphaMode),

    /// The pixel colors of the drawn content will be subtracted from the pixel colors
    /// already in the target. The target's alpha will not be affected.
    Subtract(BlendAlphaMode),

    /// The pixel colors of the drawn content will be multiplied with the pixel colors
    /// already in the target. The alpha component will also be multiplied.
    Multiply,
}

impl Default for BlendMode {
    fn default() -> BlendMode {
        BlendMode::Alpha(BlendAlphaMode::Multiply)
    }
}

/// How to treat alpha values when blending colors.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BlendAlphaMode {
    /// The RGB components of the color are multiplied by the alpha component before
    /// blending with the target.
    ///
    /// This is the default behaviour.
    Multiply,

    /// The RGB components of the color are *not* multiplied by the alpha component before
    /// blending with the target.
    ///
    /// For this mode to work correctly, you must have multiplied the RGB components of
    /// the colour by the alpha component at some previous point in time (e.g. in your
    /// code, or in your asset pipeline).
    Premultiplied,
}

impl Default for BlendAlphaMode {
    fn default() -> BlendAlphaMode {
        BlendAlphaMode::Multiply
    }
}