1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//! Functions and types relating to textures.

use std::cell::Cell;
use std::path::Path;
use std::rc::Rc;

use crate::error::{Result, TetraError};
use crate::fs;
use crate::graphics::{self, DrawParams, Drawable, Rectangle};
use crate::platform::{GraphicsDevice, RawTexture};
use crate::Context;

#[derive(Debug)]
pub(crate) struct TextureSharedData {
    pub(crate) handle: RawTexture,
    filter_mode: Cell<FilterMode>,
}

impl PartialEq for TextureSharedData {
    fn eq(&self, other: &TextureSharedData) -> bool {
        // filter_mode should always match what's set on the GPU,
        // so we can ignore it for equality checks.

        self.handle.eq(&other.handle)
    }
}

/// A texture, held in GPU memory.
///
/// The following file formats are supported:
///
/// * PNG
/// * JPEG
/// * GIF
/// * BMP
/// * TIFF
/// * TGA
/// * WEBP
/// * ICO
/// * PNM
///
/// This type acts as a lightweight handle to the associated graphics hardware data,
/// and so can be cloned with little overhead.
#[derive(Debug, Clone, PartialEq)]
pub struct Texture {
    pub(crate) data: Rc<TextureSharedData>,
}

impl Texture {
    /// Creates a new texture from the given file.
    ///
    /// The format will be determined based on the file extension.
    ///
    /// # Errors
    ///
    /// * `TetraError::PlatformError` will be returned if the underlying graphics API encounters an error.
    /// * `TetraError::FailedToLoadAsset` will be returned if the file could not be loaded.
    /// * `TetraError::InvalidTexture` will be returned if the texture data was invalid.
    pub fn new<P>(ctx: &mut Context, path: P) -> Result<Texture>
    where
        P: AsRef<Path>,
    {
        let image = fs::read_to_image(path)?.to_rgba();
        let (width, height) = image.dimensions();

        Texture::from_rgba(
            ctx,
            width as i32,
            height as i32,
            image.into_raw().as_slice(),
        )
    }

    /// Creates a new texture from a slice of data, encoded in one of Tetra's supported
    /// file formats (except for TGA).
    ///
    /// This is useful in combination with `include_bytes`, as it allows you to include
    /// your textures directly in the binary.
    ///
    /// The format will be determined based on the 'magic bytes' at the beginning of the
    /// data. This should be reasonably reliable, but a `from_data_with_format` function
    /// might have to be added later. Note that TGA files do not have recognizable magic
    /// bytes, so this function will not recognize them.
    ///
    /// # Errors
    ///
    /// * `TetraError::PlatformError` will be returned if the underlying graphics API encounters an error.
    /// * `TetraError::InvalidTexture` will be returned if the texture data was invalid.
    pub fn from_file_data(ctx: &mut Context, data: &[u8]) -> Result<Texture> {
        let image = image::load_from_memory(data)
            .map_err(TetraError::InvalidTexture)?
            .to_rgba();

        let (width, height) = image.dimensions();

        Texture::from_rgba(
            ctx,
            width as i32,
            height as i32,
            image.into_raw().as_slice(),
        )
    }

    /// Creates a new texture from a slice of RGBA pixel data.
    ///
    /// This is useful if you wish to create a texture at runtime.
    ///
    /// Note that this method requires you to provide enough data to fill the texture.
    /// If you provide too much data, it will be truncated.
    ///
    /// # Errors
    ///
    /// * `TetraError::NotEnoughData` will be returned if not enough data is provided to fill
    /// the texture. This is to prevent the graphics API from trying to read uninitialized memory.
    pub fn from_rgba(ctx: &mut Context, width: i32, height: i32, data: &[u8]) -> Result<Texture> {
        Texture::with_device(
            &mut ctx.device,
            width,
            height,
            data,
            ctx.graphics.default_filter_mode,
        )
    }

    pub(crate) fn with_device(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        data: &[u8],
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        let expected = (width * height * 4) as usize;
        let actual = data.len();

        if expected > actual {
            return Err(TetraError::NotEnoughData { expected, actual });
        }

        let handle = device.new_texture(width, height)?;

        device.set_texture_data(&handle, &data, 0, 0, width, height);
        device.set_texture_filter_mode(&handle, filter_mode);

        Ok(Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(FilterMode::Linear),
            }),
        })
    }

    pub(crate) fn with_device_empty(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        let handle = device.new_texture(width, height)?;
        device.set_texture_filter_mode(&handle, filter_mode);

        Ok(Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(filter_mode),
            }),
        })
    }

    /// Returns the width of the texture.
    pub fn width(&self) -> i32 {
        self.data.handle.width()
    }

    /// Returns the height of the texture.
    pub fn height(&self) -> i32 {
        self.data.handle.height()
    }

    /// Returns the size of the canvas.
    pub fn size(&self) -> (i32, i32) {
        (self.data.handle.width(), self.data.handle.height())
    }

    /// Returns the filter mode being used by the texture.
    pub fn filter_mode(&self) -> FilterMode {
        self.data.filter_mode.get()
    }

    /// Sets the filter mode that should be used by the texture.
    pub fn set_filter_mode(&mut self, ctx: &mut Context, filter_mode: FilterMode) {
        ctx.device
            .set_texture_filter_mode(&self.data.handle, filter_mode);

        self.data.filter_mode.set(filter_mode);
    }
}

impl Drawable for Texture {
    fn draw<P>(&self, ctx: &mut Context, params: P)
    where
        P: Into<DrawParams>,
    {
        let params = params.into();

        let texture_width = self.width() as f32;
        let texture_height = self.height() as f32;
        let clip = params
            .clip
            .unwrap_or_else(|| Rectangle::new(0.0, 0.0, texture_width, texture_height));

        let x1 = 0.0;
        let y1 = 0.0;
        let x2 = clip.width;
        let y2 = clip.height;

        let u1 = clip.x / texture_width;
        let v1 = clip.y / texture_height;
        let u2 = (clip.x + clip.width) / texture_width;
        let v2 = (clip.y + clip.height) / texture_height;

        graphics::set_texture(ctx, self);
        graphics::push_quad(ctx, x1, y1, x2, y2, u1, v1, u2, v2, &params);
    }
}

/// Filtering algorithms that can be used when scaling an image.
///
/// Tetra currently defaults to using `Nearest` for all newly created textures.
#[derive(Debug, Clone, Copy)]
pub enum FilterMode {
    /// Nearest-neighbor interpolation. This preserves hard edges and details, but may look pixelated.
    ///
    /// If you're using pixel art, this is probably the scaling mode you should use.
    Nearest,

    /// Linear interpolation. This smooths images when scaling them up or down.
    Linear,
}