1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//! Supposedly a "safe" way to create a custom DSTs with flexible array members.
//!
//! Currently, the main usage is FFI that uses a single allocation to return
//! both the API-consumable data and the backing storage for it at the same,
//! think inline strings or collections with dynamic item count.

#![cfg_attr(feature = "static-assert", feature(const_transmute))]
#![no_std]
#![deny(missing_docs)]

use core::{mem, slice};

#[cfg(feature = "static-assert")]
const _: () = {
    // As of writing, only the pointer layout to slices (`&[u8]`) and singular
    // trait objects (`&dyn Trait`) are defined, so make sure at compile-time
    // that the layout of such types isn't accidentally broken with next Rust
    // release.
    // See https://rust-lang.github.io/unsafe-code-guidelines/layout/pointers.html.
    macro_rules! check_dst_len {
        ($type: ty, $val: expr, $len: expr) => {{
            const VAL: &$type = &$val;

            const REPR: (*const (), usize) = unsafe { core::intrinsics::transmute(VAL) };
            static_assertions::const_assert_eq!(REPR.1, $len);
        }};
    }

    check_dst_len!(Tailed<(), [u8]>, Tailed { head: (), tail: [] }, 0);
    check_dst_len!(Tailed<u32, [u8]>, Tailed { head: 0, tail: [] }, 0);
    check_dst_len!(Tailed<u32, [u8]>, Tailed { head: 5, tail: [1] }, 1);
    check_dst_len!(Tailed<u32, [u8]>, Tailed { head: 8, tail: [1, 2] }, 2);
    check_dst_len!(Tailed<u32, [u8]>, Tailed { head: 42, tail: [1, 2, 3] }, 3);
    check_dst_len!(Tailed<u32, [u32]>, Tailed { head: 0xFFFF, tail: [1, 2, 3] }, 3);
};

/// A custom DST type.
///
/// One of the main usages is `Tailed<H, [T]>`, where the type has
/// a *flexible array member*.
#[derive(PartialEq, Debug)]
#[repr(C)]
pub struct Tailed<Head, Tail: ?Sized> {
    /// Leading, sized data part of the type.
    pub head: Head,
    /// Trailing, unsized data part of the type.
    pub tail: Tail,
}

impl<H, T> Tailed<H, [T]> {
    /// Constructs a fat pointer from a pointer to the header and the **count**
    /// of elements in the **trailing slice**.
    ///
    /// # Safety
    /// It's important to specify the *count of the trailing elements* rather
    /// than the size of the allocated data.
    /// ```
    /// # use tailed::Tailed;
    ///
    /// let slice = &[1, 2, 3, 4, 5];
    /// let (ptr, len) = (slice as *const i32, slice.len());
    /// let pointed = Tailed::<_, [i32]>::from_raw_parts(ptr, 4);
    /// let pointed = unsafe { &*pointed };
    ///
    /// let other = Tailed { head: 1i32, tail: [2, 3, 4, 5] };
    /// assert_eq!(pointed, &other as &Tailed::<_, [i32]>);
    /// assert_eq!(std::mem::size_of_val(pointed), std::mem::size_of_val(&other));
    /// ```
    pub fn from_raw_parts(data: *const H, count: usize) -> *const Self {
        // https://users.rust-lang.org/t/construct-fat-pointer-to-struct/29198/9
        // Requirements of slice::from_raw_parts.
        assert!(!data.is_null());
        assert!(count * mem::size_of::<T>() <= core::isize::MAX as usize);

        let slice = unsafe { slice::from_raw_parts(data as *const (), count) };
        slice as *const [()] as *const Self
    }

    /// Constructs a fat pointer from a pointer to the header and the count
    /// of **elements** in the **trailing slice**.
    ///
    /// # Safety
    /// The pointer to header must be correctly aligned.
    /// ```
    /// # use tailed::Tailed;
    /// use std::boxed::Box;
    ///
    /// let slice = vec![1, 2, 3, 4, 5].into_boxed_slice();
    /// let (len, ptr) = (slice.len(), Box::into_raw(slice));
    /// let pointed = Tailed::<_, [i32]>::from_raw_parts_mut(ptr as *mut i32, 4);
    /// let pointed = unsafe { &mut *pointed };
    ///
    /// let other = Tailed { head: 1i32, tail: [2, 3, 4, 5] };
    /// assert_eq!(pointed, &other as &Tailed::<_, [i32]>);
    /// assert_eq!(std::mem::size_of_val(pointed), std::mem::size_of_val(&other));
    /// ```
    pub fn from_raw_parts_mut(data: *mut H, count: usize) -> *mut Self {
        // https://users.rust-lang.org/t/construct-fat-pointer-to-struct/29198/9
        // Requirements of slice::from_raw_parts.
        assert!(!data.is_null());
        assert!(count * mem::size_of::<T>() <= core::isize::MAX as usize);

        let slice = unsafe { slice::from_raw_parts_mut(data as *mut (), count) };
        slice as *mut [()] as *mut Self
    }
}

impl<H> Tailed<mem::MaybeUninit<H>, [u8]> {
    /// Creates a Tailed view into a slice of bytes.
    /// ```
    /// #![feature(maybe_uninit_extra)]
    /// # use tailed::Tailed;
    /// use core::mem::MaybeUninit;
    ///
    /// #[derive(PartialEq, Debug)]
    /// #[repr(C)]
    /// struct Header { a: u16, b: u8 };
    ///
    /// let bytes: Box<[u8]> = vec![0x01, 0x01, 0x02, 0xFF, 0x03, 0x04].into();
    ///
    /// let tailed = Tailed::<MaybeUninit<Header>, _>::from_bytes(&bytes);
    /// assert_eq!(unsafe { tailed.head.read() }, Header {a: 0x0101, b: 0x02 });
    /// assert_eq!(&tailed.tail, &[0x03, 0x04]);
    /// ```
    ///
    /// # Safety
    /// The passed reference **MUST** be aligned in a compatible fashion, as if
    /// it was an reference to dynamically-sized `Self`.
    ///
    /// The data buffer also **MUST** be *at least* `mem::size_of::<H>()` bytes
    /// long and be *properly aligned* (e.g. to account for trailing padding).
    ///
    /// Moreover, since we can't guarantee that the raw bytes correspond to a
    /// correctly initialized value of type `H`, it is the caller's
    /// responsibility to assert that.
    ///
    /// # Panics
    /// When any of the above safety preconditions are violated.
    pub fn from_bytes(data: &[u8]) -> &Self {
        Self::from_bytes_with_length(data, core::usize::MAX)
    }

    /// Creates a Tailed view into a slice of bytes with specifically `len`
    /// trailing bytes (any bytes after that are simply treated as padding).
    ///
    /// Valid trailing byte count range is `[0; mem::size_of_val(data) - mem::size_of::<H>()]`.
    /// Specify `usize::MAX` to include as many bytes in the tail byte slice as possible.
    ///
    /// ```
    /// #![feature(maybe_uninit_extra)]
    /// # use tailed::Tailed;
    /// use core::mem::MaybeUninit;
    ///
    /// #[derive(PartialEq, Debug)]
    /// #[repr(C)]
    /// struct Header { a: u16, b: u8 };
    ///
    /// let bytes: Box<[u8]> = vec![0x01, 0x01, 0x02, 0xFF, 0x03, 0xFF].into();
    ///
    /// let tailed = Tailed::<MaybeUninit<Header>, _>::from_bytes_with_length(&bytes, 1);
    /// assert_eq!(unsafe { tailed.head.read() }, Header {a: 0x0101, b: 0x02 });
    /// assert_eq!(&tailed.tail, &[0x03]);
    /// // Header is 4 bytes and there are 2 trailing bytes, despite tail having 1.
    /// assert_eq!(core::mem::size_of_val(tailed), 6);
    /// let tailed = Tailed::<MaybeUninit<Header>, _>::from_bytes_with_length(&bytes, 0);
    /// assert_eq!(&tailed.tail, &[]);
    /// let tailed = Tailed::<MaybeUninit<Header>, _>::from_bytes_with_length(&bytes, core::usize::MAX);
    /// assert_eq!(&tailed.tail, &[0x03, 0xFF]);
    /// ```
    ///
    /// # Safety
    /// In addition to upholding safety preconditions outlined in `from_bytes`,
    /// the passed `len` must be not bigger than the trailing byte count after
    /// header `H` type (including its padding).
    ///
    /// # Panics
    /// When any of the above preconditions are violated.
    pub fn from_bytes_with_length(data: &[u8], len: usize) -> &Self {
        // Every reference must be well-aligned, and DSTs are no exception. We
        // basically transmute the input reference, so make sure this operation
        // is well-defined.
        // NOTE: Due to run-time nature of DSTs, we can't simply calculate
        // `mem::align_of::<&Self>` here and must use run-time version, instead.
        let empty: &Self = &Tailed {
            head: mem::MaybeUninit::uninit(),
            tail: [],
        };
        assert!(
            data.as_ptr() as usize % mem::align_of_val(empty) == 0,
            "the passed `data` reference is not correctly aligned"
        );
        // In order to create a valid reference, the memory region referred by
        // it, even if not accessed, must be valid for a single allocated object.
        // Because of this, we need to make sure that the possible trailing
        // padding bytes, as possibly required by the ABI, are in fact in the
        // input buffer and not at the allocation boundaries.
        assert!(
            mem::size_of_val(data) % mem::align_of_val(empty) == 0,
            "the passed `data` buffer is not correctly aligned wrt. padding"
        );
        // Explicitly account for size of header type `H`, including its
        // possible trailing padding, not to mistakingly include any
        // layout-specific bytes in the tail.
        assert!(
            mem::size_of_val(data) >= mem::size_of::<H>(),
            "the passed buffer is not big enough to contain header of type `H`"
        );

        let tail_bytes = mem::size_of_val(data) - mem::size_of::<H>();
        let tail_bytes = if len == core::usize::MAX {
            tail_bytes
        } else {
            assert!(len <= tail_bytes, "trailing byte count is invalid (too big");
            len
        };

        unsafe { Self::from_bytes_unchecked_with_length(data, tail_bytes) }
    }

    /// Unchecked version of `from_bytes` that can also specify the tail byte
    /// length manually.
    pub unsafe fn from_bytes_unchecked_with_length(data: &[u8], len: usize) -> &Self {
        let ptr = data as *const _ as *const H;
        let result = &*Self::from_raw_parts(ptr as *const _, len);

        result
    }

    /// Assumes that the header part of the DST is correctly initialized,
    /// yielding a read-only typed view into underlying storage.
    ///
    /// This does not invoke any drop glue for the inner type and only provides
    /// read access to the underlying value.
    /// ```
    /// # use tailed::Tailed;
    /// use core::mem::MaybeUninit;
    ///
    /// #[derive(PartialEq, Debug)]
    /// #[repr(C)]
    /// struct Header { a: u16, b: u8 };
    ///
    /// let bytes: Box<[u8]> = vec![0x01, 0x01, 0x02, 0xFF, 0x03, 0x04].into();
    ///
    /// let tailed = Tailed::<MaybeUninit<Header>, _>::from_bytes(&bytes);
    /// let init: &Tailed<Header, _> = unsafe { Tailed::from_bytes(&bytes).assume_init() };
    /// assert_eq!(&init.head, &Header { a: 0x0101, b: 0x02});
    /// assert_eq!(&init.tail, &[0x03, 0x04]);
    /// ```
    pub unsafe fn assume_init(&self) -> &Tailed<H, [u8]> {
        // `MaybeUninit<H>` is safe to transmute to `H` and is *not* undefined
        // behaviour, as long as the underlying value is properly initialized.
        mem::transmute(self)
    }
}