1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright (c) 2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp-jit. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.

/*! synfx-dsp-jit is a specialized JIT compiler for digital (audio) signal processing for Rust.

This library allows you to compile an simplified abstract syntax tree (AST) down to machine code.
This crate uses the [Cranelift JIT compiler](https://github.com/bytecodealliance/wasmtime/tree/main/cranelift)
for this task. For called Rust functions from the JIT code, either in form
of stateful DSP nodes or stateless DSP functions, It removes any dynamic dispatch overhead.

The result is packaged conveniently for you in a [DSPFunction] structure.

One primary feature that is covered by this library is the state management of stateful
nodes/components that can be called from the AST. By attaching a unique ID to your
AST nodes that call stateful components (aka nodes), this library tracks already initialized
nodes. It does this to allow you to re-compile the [DSPFunction] and make changes without
the audio being interrupted (unless your changes interrupt it).

Aside from the compiling process and state management this library also offers
a (growing) standard library of common DSP algorithms.

All this means this library is primarily directed towards the use case within a real time
synthesis environment.

You can practically build a JIT compiled [Pure Data](https://puredata.info/)
or [SuperCollider](https://supercollider.github.io/) with this. Other notable
projects in this direction are:

- BitWig's "The Grid", which seems to use LLVM under the hood, either to AOT compiler the devices
or even JIT compiling the Grid itself (I'm not sure about that).
- [Gammou - polyphonic modular sound synthesizer](https://github.com/aliefhooghe/Gammou)

This library is used for instance by [HexoDSP](https://github.com/WeirdConstructor/HexoDSP),
which is a comprehensive DSP graph and synthesis library for developing a modular
synthesizer in Rust, such as [HexoSynth](https://github.com/WeirdConstructor/HexoSynth).
It is not the core of HexoDSP, but only provides a small optional part though.

## Quick Start API

To get you started quickly and learn how to use the API I recommend the [instant_compile_ast]
function. But be aware that this function recreates the whole [DSPNodeContext]
on each compilation, so there is no state tracking for you.

```
 use synfx_dsp_jit::build::*;
 use synfx_dsp_jit::instant_compile_ast;

 let (ctx, mut fun) = instant_compile_ast(
     op_add(literal(11.0), var("in1"))
 ).expect("No compile error");

 fun.init(44100.0, None); // Sample rate and optional previous DSPFunction

 let (sig1, sig2, res) = fun.exec_2in_2out(31.0, 10.0);

 // The result should be 11.0 + 31.0 == 42.0
 assert!((res - 42.0).abs() < 0.0001);

 // Yes, unfortunately you need to explicitly free this.
 // Because DSPFunction might be handed around to other threads.
 ctx.borrow_mut().free();
```

## DSP JIT API Example

Here is a more detailed example how the API can be used with state tracking.

```
use synfx_dsp_jit::*;
use synfx_dsp_jit::build::*;


// First we need to get a standard library with callable primitives/nodes:
let lib = get_standard_library();

// Then we create a DSPNodeContext to track newly created stateful nodes.
// You need to preserve this context across multiple calls to JIT::new() and JIT::compile().
let ctx = DSPNodeContext::new_ref();

// Create a new JIT compiler instance for compiling. Yes, you need to create a new one
// for each time you compile a DSPFunction.
let jit = JIT::new(lib.clone(), ctx.clone());

// This example shows how to use persistent variables (starting with '*')
// to build a simple phase increment oscillator
let ast = stmts(&[
    assign("*phase", op_add(var("*phase"), op_mul(literal(440.0), var("israte")))),
    _if(
        op_gt(var("*phase"), literal(1.0)),
        assign("*phase", op_sub(var("*phase"), literal(1.0))),
        None,
    ),
    var("*phase"),
]);

let mut dsp_fun = jit.compile(ASTFun::new(ast)).expect("No compile error");

// Initialize the function after compiling. For proper state tracking
// you will need to provide the previous DSPFunction as second argument to `init` here:
dsp_fun.init(44100.0, None);

// Create some audio samples:
let mut out = vec![];
for i in 0..200 {
    let (_, _, ret) = dsp_fun.exec_2in_2out(0.0, 0.0);
    if i % 49 == 0 {
        out.push(ret);
    }
}

// Just to show that this phase clock works:
assert!((out[0] - 0.0099).abs() < 0.0001);
assert!((out[1] - 0.4988).abs() < 0.0001);
assert!((out[2] - 0.9877).abs() < 0.0001);
assert!((out[3] - 0.4766).abs() < 0.0001);

ctx.borrow_mut().free();
```

*/

mod ast;
mod context;
mod jit;
pub mod stdlib;

pub use ast::{build, ASTBinOp, ASTFun, ASTNode};
pub use context::{
    DSPFunction, DSPNodeContext, DSPNodeSigBit, DSPNodeType, DSPNodeTypeLibrary, DSPState,
};
pub use jit::{get_nop_function, JITCompileError, JIT};
pub use stdlib::get_standard_library;

use std::cell::RefCell;
use std::rc::Rc;

/// This is a little helper function to help you getting started with this library.
///
/// If you plan to re-compile your functions and properly track state, I suggest you
/// to explicitly create a [DSPNodeTypeLibrary] with [get_standard_library] and a
/// [DSPNodeContext] for state tracking.
///
///```
/// use synfx_dsp_jit::build::*;
/// use synfx_dsp_jit::instant_compile_ast;
///
/// let (ctx, mut fun) = instant_compile_ast(
///     op_add(literal(11.0), var("in1"))
/// ).expect("No compile error");
///
/// fun.init(44100.0, None); // Sample rate and optional previous DSPFunction
///
/// let (sig1, sig2, res) = fun.exec_2in_2out(31.0, 10.0);
///
/// // The result should be 11.0 + 31.0 == 42.0
/// assert!((res - 42.0).abs() < 0.0001);
///
/// // Yes, unfortunately you need to explicitly free this.
/// // Because DSPFunction might be handed around to other threads.
/// ctx.borrow_mut().free();
///```
pub fn instant_compile_ast(
    ast: Box<ASTNode>,
) -> Result<(Rc<RefCell<DSPNodeContext>>, Box<DSPFunction>), JITCompileError> {
    let lib = get_standard_library();
    let ctx = DSPNodeContext::new_ref();
    let jit = JIT::new(lib.clone(), ctx.clone());
    Ok((ctx, jit.compile(ASTFun::new(ast))?))
}