1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
use num_rational::*;


/// This Pos type is expected to be generate enough to allow the user
/// to cast into and out of their own type, such as from the euclid crate.
pub type Pos = (isize, isize);


/// Compute FOV information for a given position using the shadow mapping algorithm.
///
/// This uses the is_blocking closure, which checks whether a given position is
/// blocked (such as by a wall), and is expected to capture some kind of grid
/// or map from the user.
///
/// The mark_visible closure provides the ability to collect visible tiles. This
/// may push them to a vector (captured in the closure's environment), or
/// modify a cloned version of the map.
///
///
/// I tried to write a nicer API which would modify the map as a separate user
/// data, but I can't work out the lifetime annotations.
pub fn compute_fov<F, G>(origin: Pos, is_blocking: &mut F, mark_visible: &mut G)
    where F: FnMut(Pos) -> bool,
          G: FnMut(Pos), {

    mark_visible(origin);

    for i in 0..4 {
        let quadrant = Quadrant::new(Cardinal::from_index(i), origin);

        let first_row = Row::new(1, Rational::new(-1, 1), Rational::new(1, 1));

        scan(first_row, quadrant, is_blocking, mark_visible);
    }
}

fn scan<F, G>(row: Row, quadrant: Quadrant, is_blocking: &mut F, mark_visible: &mut G) 
    where F: FnMut(Pos) -> bool,
          G: FnMut(Pos), {
    let mut prev_tile = None;

    let mut row = row;

    for tile in row.tiles() {
        let tile_is_wall = is_blocking(quadrant.transform(tile));
        let tile_is_floor = !tile_is_wall;

        let prev_is_wall = prev_tile.map_or(false, |prev| is_blocking(quadrant.transform(prev)));
        let prev_is_floor = prev_tile.map_or(false, |prev| !is_blocking(quadrant.transform(prev)));

        if tile_is_wall || is_symmetric(row, tile) {
            let pos = quadrant.transform(tile);

            mark_visible(pos);
        }

        if prev_is_wall && tile_is_floor {
            row.start_slope = slope(tile);
        }

        if prev_is_floor && tile_is_wall {
            let mut next_row = row.next();

            next_row.end_slope = slope(tile);

            scan(next_row, quadrant, is_blocking, mark_visible);
        }

        prev_tile = Some(tile);
    }
        
    if prev_tile.map_or(false, |tile| !is_blocking(quadrant.transform(tile))) {
        scan(row.next(), quadrant, is_blocking, mark_visible);
    }
}



#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
enum Cardinal {
    North,
    East,
    South,
    West,
}

impl Cardinal {
    fn from_index(index: usize) -> Cardinal {
        use Cardinal::*;
        return [North, East, South, West][index];
    }
}

#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
struct Quadrant {
    cardinal: Cardinal,
    ox: isize,
    oy: isize,
}

impl Quadrant {
    fn new(cardinal: Cardinal, origin: Pos) -> Quadrant {
        return Quadrant { cardinal, ox: origin.0, oy: origin.1 };
    }

    fn transform(&self, tile: Pos) -> Pos{
        let (row, col) = tile;

        match self.cardinal {
            Cardinal::North => {
                return (self.ox + col, self.oy - row);
            }

            Cardinal::South => {
                return (self.ox + col, self.oy + row);
            }

            Cardinal::East => {
                return (self.ox + row, self.oy + col);
            }

            Cardinal::West => {
                return (self.ox - row, self.oy + col);
            }
        }
    }
}

#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
struct Row {
    depth: isize,
    start_slope: Rational,
    end_slope: Rational,
}

impl Row {
    fn new(depth: isize, start_slope: Rational, end_slope: Rational) -> Row {
        return Row { depth, start_slope, end_slope, };
    }

    fn tiles(&self) -> impl Iterator<Item=Pos> {
        let depth_times_start = Rational::new(self.depth, 1) * self.start_slope;
        let depth_times_end = Rational::new(self.depth, 1) * self.end_slope;

        let min_col = round_ties_up(depth_times_start);

        let max_col = round_ties_down(depth_times_end);

        let depth = self.depth;

        return (min_col..=max_col).map(move |col| (depth, col));
    }

    fn next(&self) -> Row {
        return Row::new(self.depth + 1, self.start_slope, self.end_slope);
    }
}

fn slope(tile: Pos) -> Rational {
    let (row_depth, col) = tile;
    return Rational::new(2 * col - 1, 2 * row_depth);
}

fn is_symmetric(row: Row, tile: Pos) -> bool {
    let (_row_depth, col) = tile;

    let depth_times_start = Rational::new(row.depth, 1) * row.start_slope;
    let depth_times_end = Rational::new(row.depth, 1) * row.end_slope;

    let col_rat = Rational::new(col, 1);

    let symmetric = col_rat >= depth_times_start && col_rat <= depth_times_end;
    if tile == (6, 0) {
        dbg!(symmetric);
    }

    return symmetric;
}

fn round_ties_up(n: Rational) -> isize {
    return (n + Rational::new(1, 2)).floor().to_integer();
}

fn round_ties_down(n: Rational) -> isize {
    return (n - Rational::new(1, 2)).ceil().to_integer();
}

#[cfg(test)]
fn inside_map<T>(pos: Pos, map: &Vec<Vec<T>>) -> bool {
    let is_inside = (pos.1 as usize) < map.len() && (pos.0 as usize) < map[0].len();
    return is_inside;
}

#[cfg(test)]
fn matching_visible(expected: Vec<Vec<usize>>, visible: Vec<(isize, isize)>) {
    for y in 0..expected.len() {
        for x in 0..expected[0].len() {
            if visible.contains(&(x as isize, y as isize)) {
                print!("1");
            } else {
                print!("0");
            }
            assert_eq!(expected[y][x] == 1, visible.contains(&(x as isize, y as isize)));
        }
        println!();
    }
}

#[test]
fn test_expansive_walls() {
    let origin = (1, 2);

    let tiles = vec!(vec!(1, 1, 1, 1, 1, 1, 1),
                     vec!(1, 0, 0, 0, 0, 0, 1),
                     vec!(1, 0, 0, 0, 0, 0, 1),
                     vec!(1, 1, 1, 1, 1, 1, 1));

    let mut is_blocking = |pos: Pos| {
        return  !inside_map(pos, &tiles) || tiles[pos.1 as usize][pos.0 as usize] == 1;
    };

    let mut visible = Vec::new();
    let mut mark_visible = |pos: Pos| {
        if inside_map(pos, &tiles) && !visible.contains(&pos) {
            visible.push(pos);
        }
    };

    compute_fov(origin, &mut is_blocking, &mut mark_visible);

    let expected = vec!(vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 1, 1, 1, 1, 1));
    matching_visible(expected, visible);
}


#[test]
fn test_expanding_shadows() {
    let origin = (0, 0);

    let tiles = vec!(vec!(0, 0, 0, 0, 0, 0, 0),
                     vec!(0, 1, 0, 0, 0, 0, 0),
                     vec!(0, 0, 0, 0, 0, 0, 0),
                     vec!(0, 0, 0, 0, 0, 0, 0),
                     vec!(0, 0, 0, 0, 0, 0, 0));

    let mut is_blocking = |pos: Pos| {
        return !inside_map(pos, &tiles) || tiles[pos.1 as usize][pos.0 as usize] == 1;
    };

    let mut visible = Vec::new();
    let mut mark_visible = |pos: Pos| {
        if inside_map(pos, &tiles) && !visible.contains(&pos) {
            visible.push(pos);
        }
    };

    compute_fov(origin, &mut is_blocking, &mut mark_visible);

    let expected = vec!(vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 0, 0, 1, 1, 1),
                        vec!(1, 1, 0, 0, 0, 0, 1),
                        vec!(1, 1, 1, 0, 0, 0, 0));
    matching_visible(expected, visible);
}

#[test]
fn test_no_blind_corners() {
    let origin = (3, 0);

    let tiles = vec!(vec!(0, 0, 0, 0, 0, 0, 0),
                     vec!(1, 1, 1, 1, 0, 0, 0),
                     vec!(0, 0, 0, 1, 0, 0, 0),
                     vec!(0, 0, 0, 1, 0, 0, 0));

    let mut is_blocking = |pos: Pos| {
        let outside = (pos.1 as usize) >= tiles.len() || (pos.0 as usize) >= tiles[0].len();
        return  outside || tiles[pos.1 as usize][pos.0 as usize] == 1;
    };

    let mut visible = Vec::new();
    let mut mark_visible = |pos: Pos| {
        let outside = (pos.1 as usize) >= tiles.len() || (pos.0 as usize) >= tiles[0].len();

        if !outside && !visible.contains(&pos) {
            visible.push(pos);
        }
    };

    compute_fov(origin, &mut is_blocking, &mut mark_visible);

    let expected = vec!(vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(1, 1, 1, 1, 1, 1, 1),
                        vec!(0, 0, 0, 0, 1, 1, 1),
                        vec!(0, 0, 0, 0, 0, 1, 1));
    matching_visible(expected, visible);
}