syd 3.41.7

rock-solid application kernel
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
//
// Syd: rock-solid application kernel
// src/seal.rs: Execute program as sealed anonymous file
//
// Copyright (c) 2024, 2025 Ali Polatel <alip@chesswob.org>
// Based in part upon pentacle which is:
//   Copyright (c) iliana destroyer of worlds <iliana@buttslol.net>
//   SPDX-License-Identifier: MIT
//
// SPDX-License-Identifier: GPL-3.0

// SAFETY: This module has been liberated from unsafe code!
#![forbid(unsafe_code)]

// Last sync with pentacle:
// Version 1.0.0
// Commit:e606ab250e6655865bb93a6d98157093f2eb455f

use std::{
    ffi::CStr,
    fs::{File, Permissions},
    io::{self, Read},
    ops::{Deref, DerefMut},
    os::unix::{fs::PermissionsExt as _, io::AsRawFd, process::CommandExt},
    process::Command,
};

use nix::{
    errno::Errno,
    fcntl::{fcntl, FcntlArg, SealFlag},
    libc::{
        c_int, c_uint, F_SEAL_FUTURE_WRITE, F_SEAL_GROW, F_SEAL_SEAL, F_SEAL_SHRINK, F_SEAL_WRITE,
        MFD_ALLOW_SEALING, MFD_CLOEXEC, MFD_EXEC, MFD_NOEXEC_SEAL,
    },
    sys::memfd::MFdFlags,
};

use crate::err::err2no;

// SAFETY: The provided slice is nul-terminated and does not contain any interior nul bytes. On Rust
// 1.64 and later (rust-lang/rust#99977), these required invariants are checked at compile time.
//
// The ideal alternative here is to use C-string literals, introduced in Rust 1.77, but that is a
// steep MSRV bump to introduce at time of writing this comment.
const DEFAULT_MEMFD_NAME: &CStr = c"syd";

// not yet present in the libc crate
// linux: include/uapi/linux/fcntl.h
const F_SEAL_EXEC: c_int = 0x0020;

const OPTIONS: SealOptions = SealOptions::new().close_on_exec(true).executable(true);

/// Ensure the currently running program is a sealed anonymous file.
///
/// For safety, the executable path is located in `/proc/self/maps`, and
/// executable's inode and device ID are verified on open. On verification
/// errors `Errno::EBADF` is returned.
///
/// If the current executable is not a sealed anonymous file, a new
/// anonymous file is created, the executable content is copied to it,
/// the file is sealed, and [`CommandExt::exec`] is called. When the
/// program begins again, this function will detect the executable as a
/// sealed anonymous file and return `Ok(())`.
///
/// You should call this function at the beginning of `main`. This
/// function has the same implications as [`CommandExt::exec`]: no
/// destructors on the current stack or any other thread’s stack will be
/// run.
///
/// # Errors
///
/// An error is returned if the executable file is not a regular file,
/// file fails to open, file verification fails, `memfd_create(2)`
/// fails, the `fcntl(2)` `F_GET_SEALS` or `F_ADD_SEALS` commands fail,
/// or copying from executable file to the anonymous file fails.
pub fn ensure_sealed() -> Result<(), Errno> {
    // SAFETY: This runs before sandboxing starts,
    // so safe open API is not available yet.
    #[expect(clippy::disallowed_methods)]
    let mut file = File::open("/proc/self/exe").map_err(|err| err2no(&err))?;
    if OPTIONS.is_sealed(&file) {
        Ok(())
    } else {
        let mut command = SealedCommand::new(&mut file)?;
        let mut args = std::env::args_os().fuse();
        if let Some(arg0) = args.next() {
            command.arg0(arg0);
        }
        command.args(args);

        // Force RUST_BACKTRACE environment variable to 0 for Syd.
        // Passthrough the original value to the sandbox process.
        // See syd.rs for the other branch.
        // Rest is handled in unshare/child.rs.
        match std::env::var_os("RUST_BACKTRACE") {
            Some(val) => command.env("SYD_RUST_BACKTRACE", val),
            None => command.env_remove("SYD_RUST_BACKTRACE"),
        };
        command.env("RUST_BACKTRACE", "0");

        Err(err2no(&command.exec()))
    }
}

/// A [`Command`] wrapper that spawns sealed memory-backed programs.
///
/// You can use the standard [`Command`] builder methods (such as [`spawn`][`Command::spawn`] and
/// [`CommandExt::exec`]) via [`Deref` coercion][`DerefMut`].
pub struct SealedCommand {
    inner: Command,
    // we need to keep this memfd open for the lifetime of this struct
    _memfd: File,
}

impl SealedCommand {
    /// Constructs a new [`Command`] for launching the program data in `program` as a sealed
    /// memory-backed file, with the same default configuration as [`Command::new`].
    ///
    /// The memory-backed file will close on `execve(2)`.
    ///
    /// `argv[0]` of the program will default to "syd". [`CommandExt::arg0`] can override this.
    ///
    /// # Errors
    ///
    /// An error is returned if `memfd_create(2)` fails, the `fcntl(2)` `F_GET_SEALS` or
    /// `F_ADD_SEALS` commands fail, or copying from `program` to the anonymous file fails.
    pub fn new<R: Read>(program: &mut R) -> Result<Self, Errno> {
        let mut memfd = OPTIONS.create()?;
        io::copy(program, &mut memfd).or(Err(Errno::EIO))?;
        OPTIONS.seal(&mut memfd)?;

        let mut comm = Command::new(format!("/proc/self/fd/{}", memfd.as_raw_fd()));
        comm.arg0("syd");

        Ok(Self {
            inner: comm,
            _memfd: memfd,
        })
    }
}

impl Deref for SealedCommand {
    type Target = Command;

    fn deref(&self) -> &Command {
        &self.inner
    }
}

impl DerefMut for SealedCommand {
    fn deref_mut(&mut self) -> &mut Command {
        &mut self.inner
    }
}

macro_rules! set_flag {
    ($flags:expr, $flag:expr, $value:expr) => {
        if $value {
            $flags |= $flag;
        } else {
            $flags &= !$flag;
        }
    };
}

macro_rules! seal {
    (
        $seal_ident:ident
        $( { $( #[ $attr:meta ] )* } )? ,
        $must_seal_ident:ident
        $( { $( #[ $must_attr:meta ] )* } )? ,
        $( ? $preflight:ident : )? $flag:expr,
        $try_to:expr,
        $default:expr
    ) => {
        #[doc = concat!("If `true`, try to ", $try_to, ".")]
        #[doc = ""]
        #[doc = "If `false`, also set"]
        #[doc = concat!("[`SealOptions::", stringify!($must_seal_ident), "`]")]
        #[doc = "to `false`."]
        #[doc = ""]
        #[doc = concat!("This flag is `", $default, "` by default.")]
        $($( #[ $attr ] )*)?
        pub const fn $seal_ident(mut self, $seal_ident: bool) -> SealOptions {
            if true $( && self.$preflight() )? {
                set_flag!(self.seal_flags, $flag, $seal_ident);
            }
            if !$seal_ident {
                self.must_seal_flags &= !$flag;
            }
            self
        }

        #[doc = "If `true`, also set"]
        #[doc = concat!("[`SealOptions::", stringify!($seal_ident), "`] to `true`")]
        #[doc = "and ensure it is successful when [`SealOptions::seal`] is called."]
        #[doc = ""]
        #[doc = concat!("This flag is `", $default, "` by default.")]
        $($( #[ $must_attr ] )*)?
        pub const fn $must_seal_ident(mut self, $must_seal_ident: bool) -> SealOptions {
            if $must_seal_ident {
                self.seal_flags |= $flag;
            }
            set_flag!(self.must_seal_flags, $flag, $must_seal_ident);
            self
        }
    };
}

/// Options for creating a sealed anonymous file.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[must_use]
pub struct SealOptions {
    memfd_flags: c_uint,
    seal_flags: c_int,
    must_seal_flags: c_int,
}

impl Default for SealOptions {
    fn default() -> Self {
        Self::new()
    }
}

impl SealOptions {
    /// Create a default set of options ready for configuration.
    ///
    /// This is equivalent to:
    /// ```
    /// use syd::seal::SealOptions;
    /// let options = SealOptions::new()
    ///     .close_on_exec(true)
    ///     .must_seal_seals(true)
    ///     .must_seal_shrinking(true)
    ///     .must_seal_growing(true)
    ///     .must_seal_writing(true)
    ///     .seal_future_writing(false)
    ///     .seal_executable(false);
    /// assert_eq!(options, SealOptions::default());
    /// ```
    pub const fn new() -> Self {
        Self {
            memfd_flags: MFD_ALLOW_SEALING | MFD_CLOEXEC,
            seal_flags: F_SEAL_SEAL | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_WRITE,
            must_seal_flags: F_SEAL_SEAL | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_WRITE,
        }
    }

    /// Sets the close-on-exec (`CLOEXEC`) flag for the new file.
    ///
    /// When a child process is created, the child normally inherits any open file descriptors.
    /// Setting the close-on-exec flag will cause this file descriptor to automatically be closed
    /// instead.
    ///
    /// This flag is `true` by default, matching the behavior of [`std::fs`].
    pub const fn close_on_exec(mut self, close_on_exec: bool) -> SealOptions {
        set_flag!(self.memfd_flags, MFD_CLOEXEC, close_on_exec);
        self
    }

    /// Sets whether the resulting file must have or not have execute permission set.
    ///
    /// If set, the OS is explicitly asked to set the execute permission when `exec` is
    /// `true`, or unset the execute permission when `exec` is `false`. If the OS refuses,
    /// [`SealOptions::create`] tries to set or unset the execute permission, and returns an error
    /// if it fails.
    ///
    /// Calling this function enables the equivalent of calling [`SealOptions::seal_executable`]
    /// with `true` for implementation reasons.
    ///
    /// This flag is neither `true` nor `false` by default; instead behavior is delegated to the
    /// OS's default behavior.
    ///
    /// # Context
    ///
    /// The original `memfd_create(2)` implementation on Linux creates anonymous files with the
    /// executable permission set. Later in Linux 6.3, programs and system administrators were
    /// given tools to control this (see also <https://lwn.net/Articles/918106/>):
    ///
    /// - Setting the sysctl `vm.memfd_noexec = 1` disables creating executable anonymous files
    ///   unless the program requests it with `MFD_EXEC`.
    /// - Setting the sysctl `vm.memfd_noexec = 2` disables the ability to create executable
    ///   anonymous files altogether, and `MFD_NOEXEC_SEAL` _must_ be used.
    /// - Calling `memfd_create(2)` with `MFD_NOEXEC_SEAL` enables the `F_SEAL_EXEC` seal.
    ///
    /// Linux prior to 6.3 is unaware of `MFD_EXEC` and `F_SEAL_EXEC`. If `memfd_create(2)` sets
    /// `errno` to `EINVAL`, this library retries the call without possibly-unknown flags, and the
    /// permission bits of the memfd are adjusted depending on this setting.
    pub const fn executable(mut self, executable: bool) -> SealOptions {
        self.memfd_flags = self.memfd_flags & !MFD_EXEC & !MFD_NOEXEC_SEAL
            | if executable {
                MFD_EXEC
            } else {
                MFD_NOEXEC_SEAL
            };
        self.seal_flags |= F_SEAL_EXEC;
        self
    }

    const fn is_executable_set(&self) -> bool {
        self.memfd_flags & (MFD_EXEC | MFD_NOEXEC_SEAL) != 0
    }

    seal!(
        seal_seals,
        must_seal_seals,
        F_SEAL_SEAL,
        "prevent further seals from being set on this file",
        true
    );
    seal!(
        seal_shrinking,
        must_seal_shrinking,
        F_SEAL_SHRINK,
        "prevent shrinking this file",
        true
    );
    seal!(
        seal_growing,
        must_seal_growing,
        F_SEAL_GROW,
        "prevent growing this file",
        true
    );
    seal!(
        seal_writing,
        must_seal_writing,
        F_SEAL_WRITE,
        "prevent writing to this file",
        true
    );
    seal!(
        seal_future_writing {
            #[doc = ""]
            #[doc = "This requires at least Linux 5.1."]
        },
        must_seal_future_writing {
            #[doc = ""]
            #[doc = "This requires at least Linux 5.1."]
        },
        F_SEAL_FUTURE_WRITE,
        "prevent directly writing to this file or creating new writable mappings, \
            but allow writes to existing writable mappings",
        false
    );
    seal!(
        seal_executable {
            #[doc = ""]
            #[doc = "If [`SealOptions::executable`] has already been called,"]
            #[doc = "this function does nothing."]
            #[doc = ""]
            #[doc = "This requires at least Linux 6.3."]
        },
        must_seal_executable {
            #[doc = ""]
            #[doc = "This requires at least Linux 6.3."]
        },
        ? seal_executable_preflight : F_SEAL_EXEC,
        "prevent modifying the executable permission of the file",
        false
    );

    const fn seal_executable_preflight(&self) -> bool {
        !self.is_executable_set()
    }

    /// Create an anonymous file, copy the contents of `reader` to it, and seal it.
    ///
    /// This is equivalent to:
    /// ```
    /// # let options = syd::seal::SealOptions::new();
    /// # let reader: &mut &[u8] = &mut &[][..];
    /// let mut file = options.create()?;
    /// std::io::copy(reader, &mut file)?;
    /// options.seal(&mut file)?;
    /// # Ok::<(), std::io::Error>(())
    /// ```
    ///
    /// # Errors
    ///
    /// This method returns an error when any of [`SealOptions::create`], [`std::io::copy`], or
    /// [`SealOptions::seal`] fail.
    pub fn copy_and_seal<R: Read>(&self, reader: &mut R) -> Result<File, Errno> {
        let mut file = self.create()?;
        io::copy(reader, &mut file).or(Err(Errno::EIO))?;
        self.seal(&mut file)?;
        Ok(file)
    }

    /// Create an unsealed anonymous file with these options.
    ///
    /// It is the caller's responsibility to seal this file after writing with
    /// [`SealOptions::seal`]. If possible, avoid using this function and prefer
    /// [`SealOptions::copy_and_seal`].
    ///
    /// # Errors
    ///
    /// This method returns an error when:
    /// - `memfd_create(2)` fails
    /// - `SealOptions::executable` was set but permissions cannot be changed as required
    pub fn create(&self) -> Result<File, Errno> {
        let file = match memfd_create(DEFAULT_MEMFD_NAME, self.memfd_flags) {
            Ok(file) => file,
            Err(Errno::EINVAL) if self.is_executable_set() => {
                // Linux prior to 6.3 will not know about `MFD_EXEC` or `MFD_NOEXEC_SEAL`,
                // and returns `EINVAL` when it gets unknown flag bits. Retry without the
                // possibly-unknown flag, and then attempt to set the appropriate permissions.
                //
                // (If `vm.memfd_noexec = 2`, we won't hit this branch because the OS returns
                // EACCES.)
                memfd_create(
                    DEFAULT_MEMFD_NAME,
                    self.memfd_flags & !MFD_EXEC & !MFD_NOEXEC_SEAL,
                )?
            }
            Err(err) => return Err(err),
        };

        if self.is_executable_set() {
            let permissions = file.metadata().or(Err(Errno::EACCES))?.permissions();
            let new_permissions =
                Permissions::from_mode(if self.memfd_flags & MFD_NOEXEC_SEAL != 0 {
                    permissions.mode() & !0o111
                } else if self.memfd_flags & MFD_EXEC != 0 {
                    permissions.mode() | 0o111
                } else {
                    return Ok(file);
                });
            if permissions != new_permissions {
                file.set_permissions(new_permissions)
                    .or(Err(Errno::EACCES))?;
            }
        }

        Ok(file)
    }

    /// Seal an anonymous file with these options.
    ///
    /// This should be called on a file created with [`SealOptions::create`]. Attempting to use
    /// this method on other files will likely fail.
    ///
    /// # Errors
    ///
    /// This method returns an error when:
    /// - the `fcntl(2)` `F_ADD_SEALS` command fails (other than `EINVAL`).
    /// - the `fcntl(2)` `F_GET_SEALS` command fails.
    /// - if any required seals are not present (in this case errno is set to `EBADF`).
    pub fn seal(&self, file: &mut File) -> Result<(), Errno> {
        // Set seals in groups, based on how recently the seal was added to Linux. Ignore `EINVAL`;
        // we'll verify against `self.must_seal_flags`.
        for group in [
            F_SEAL_EXEC,                                              // Linux 6.3
            F_SEAL_FUTURE_WRITE,                                      // Linux 5.1
            F_SEAL_SEAL | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_WRITE, // Linux 3.17
        ] {
            match fcntl_add_seals(file, self.seal_flags & group) {
                Ok(()) => {}
                Err(Errno::EINVAL) => {}
                Err(err) => return Err(err),
            }
        }

        if self.is_sealed_inner(file)? {
            Ok(())
        } else {
            Err(Errno::EBADF)
        }
    }

    /// Check if `file` is sealed as required by these options.
    ///
    /// If the file doesn't support sealing (or `fcntl(2)` otherwise returns an error), this method
    /// returns `false`.
    pub fn is_sealed(&self, file: &File) -> bool {
        self.is_sealed_inner(file).unwrap_or(false)
    }

    fn is_sealed_inner(&self, file: &File) -> Result<bool, Errno> {
        Ok(fcntl_get_seals(file)? & self.must_seal_flags == self.must_seal_flags)
    }
}

fn memfd_create(name: &CStr, flags: c_uint) -> Result<File, Errno> {
    nix::sys::memfd::memfd_create(name, MFdFlags::from_bits_retain(flags)).map(File::from)
}

fn fcntl_get_seals(file: &File) -> Result<c_int, Errno> {
    fcntl(file, FcntlArg::F_GET_SEALS)
}

fn fcntl_add_seals(file: &File, arg: c_int) -> Result<(), Errno> {
    fcntl(file, FcntlArg::F_ADD_SEALS(SealFlag::from_bits_retain(arg))).map(drop)
}

#[cfg(test)]
mod test {
    use std::os::unix::fs::PermissionsExt as _;

    use super::{
        c_int, SealOptions, F_SEAL_EXEC, F_SEAL_FUTURE_WRITE, F_SEAL_GROW, F_SEAL_SEAL,
        F_SEAL_SHRINK, F_SEAL_WRITE, MFD_ALLOW_SEALING, MFD_CLOEXEC, MFD_EXEC, MFD_NOEXEC_SEAL,
    };

    #[test]
    fn new() {
        let options = SealOptions {
            memfd_flags: MFD_ALLOW_SEALING,
            seal_flags: 0,
            must_seal_flags: 0,
        };
        assert_eq!(
            options
                .close_on_exec(true)
                .must_seal_seals(true)
                .must_seal_shrinking(true)
                .must_seal_growing(true)
                .must_seal_writing(true)
                .seal_future_writing(false)
                .seal_executable(false),
            SealOptions::new()
        );
    }

    #[test]
    fn flags() {
        const ALL_SEALS: c_int = F_SEAL_SEAL
            | F_SEAL_SHRINK
            | F_SEAL_GROW
            | F_SEAL_WRITE
            | F_SEAL_FUTURE_WRITE
            | F_SEAL_EXEC;

        let mut options = SealOptions::new();
        assert_eq!(options.memfd_flags & MFD_ALLOW_SEALING, MFD_ALLOW_SEALING);

        assert_eq!(options.memfd_flags & MFD_CLOEXEC, MFD_CLOEXEC);
        options = options.close_on_exec(false);
        assert_eq!(options.memfd_flags & MFD_CLOEXEC, 0);
        options = options.close_on_exec(true);
        assert_eq!(options.memfd_flags & MFD_CLOEXEC, MFD_CLOEXEC);

        assert_eq!(
            options.seal_flags & ALL_SEALS,
            ALL_SEALS & !F_SEAL_FUTURE_WRITE & !F_SEAL_EXEC
        );
        assert_eq!(
            options.must_seal_flags & ALL_SEALS,
            ALL_SEALS & !F_SEAL_FUTURE_WRITE & !F_SEAL_EXEC
        );
        options = options
            .must_seal_future_writing(true)
            .must_seal_executable(true);
        assert_eq!(options.seal_flags & ALL_SEALS, ALL_SEALS);
        assert_eq!(options.must_seal_flags & ALL_SEALS, ALL_SEALS);
        // `seal_*(false)` unsets `must_seal_*`
        options = options
            .seal_seals(false)
            .seal_shrinking(false)
            .seal_growing(false)
            .seal_writing(false)
            .seal_future_writing(false)
            .seal_executable(false);
        assert_eq!(options.seal_flags & ALL_SEALS, 0);
        assert_eq!(options.must_seal_flags & ALL_SEALS, 0);
        // `seal_*(true)` does not set `must_seal_*`
        options = options
            .seal_seals(true)
            .seal_shrinking(true)
            .seal_growing(true)
            .seal_writing(true)
            .seal_future_writing(true)
            .seal_executable(true);
        assert_eq!(options.seal_flags & ALL_SEALS, ALL_SEALS);
        assert_eq!(options.must_seal_flags & ALL_SEALS, 0);
        // `must_seal_*(true)` sets `seal_*`
        options = options
            .seal_seals(false)
            .seal_shrinking(false)
            .seal_growing(false)
            .seal_writing(false)
            .seal_future_writing(false)
            .seal_executable(false);
        assert_eq!(options.seal_flags & ALL_SEALS, 0);
        assert_eq!(options.must_seal_flags & ALL_SEALS, 0);
        options = options
            .must_seal_seals(true)
            .must_seal_shrinking(true)
            .must_seal_growing(true)
            .must_seal_writing(true)
            .must_seal_future_writing(true)
            .must_seal_executable(true);
        assert_eq!(options.seal_flags & ALL_SEALS, ALL_SEALS);
        assert_eq!(options.must_seal_flags & ALL_SEALS, ALL_SEALS);
        // `must_seal_*(false)` does not unset `seal_*`
        options = options
            .must_seal_seals(false)
            .must_seal_shrinking(false)
            .must_seal_growing(false)
            .must_seal_writing(false)
            .must_seal_future_writing(false)
            .must_seal_executable(false);
        assert_eq!(options.seal_flags & ALL_SEALS, ALL_SEALS);
        assert_eq!(options.must_seal_flags & ALL_SEALS, 0);
    }

    #[test]
    fn execute_flags() {
        let mut options = SealOptions::new();
        assert_eq!(options.seal_flags & F_SEAL_EXEC, 0);
        options = options.seal_executable(true);
        assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
        options = options.seal_executable(false);
        assert_eq!(options.seal_flags & F_SEAL_EXEC, 0);

        for _ in 0..2 {
            options = options.executable(true);
            assert_eq!(options.memfd_flags & (MFD_EXEC | MFD_NOEXEC_SEAL), MFD_EXEC);
            assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
            // no-op once `executable` is called
            options = options.seal_executable(false);
            assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);

            options = options.executable(false);
            assert_eq!(
                options.memfd_flags & (MFD_EXEC | MFD_NOEXEC_SEAL),
                MFD_NOEXEC_SEAL
            );
            assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
            // no-op once `executable` is called
            options = options.seal_executable(false);
            assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
        }

        assert_eq!(options.must_seal_flags & F_SEAL_EXEC, 0);
        options = options.must_seal_executable(true);
        assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
        assert_eq!(options.must_seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
        options = options.seal_executable(false);
        assert_eq!(options.seal_flags & F_SEAL_EXEC, F_SEAL_EXEC);
        assert_eq!(options.must_seal_flags & F_SEAL_EXEC, 0);
    }

    #[test]
    fn executable() {
        let file = SealOptions::new()
            .executable(false)
            .copy_and_seal(&mut &[][..])
            .unwrap();
        assert_eq!(file.metadata().unwrap().permissions().mode() & 0o111, 0);

        let file = SealOptions::new()
            .executable(true)
            .copy_and_seal(&mut &[][..])
            .unwrap();
        assert_eq!(file.metadata().unwrap().permissions().mode() & 0o111, 0o111);
    }
}