1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//! Peripheral API generator from [CMSIS-SVD] files
//!
//! [CMSIS-SVD]: https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
//!
//! An SVD file is an XML file that describes the hardware features of a
//! microcontroller. In particular, it lists all the peripherals available to the
//! device, where the registers associated to each device are located in memory,
//! and what's the function of each register.
//!
//! `svd2rust` is a command line tool that transforms SVD files into crates that
//! expose a type safe API to access the peripherals of the device.
//!
//! # Installation
//!
//! ```bash
//! $ cargo install svd2rust
//! ```
//!
//! # Usage
//!
//! `svd2rust` supports Cortex-M, MSP430, RISCV and Xtensa LX6 microcontrollers. The generated crate can
//! be tailored for either architecture using the `--target` flag. The flag accepts "cortex-m",
//! "msp430", "riscv", "xtensa-lx" and "none" as values. "none" can be used to generate a crate that's
//! architecture agnostic and that should work for architectures that `svd2rust` doesn't currently
//! know about like the Cortex-A architecture.
//!
//! If the `--target` flag is omitted `svd2rust` assumes the target is the Cortex-M architecture.
//!
//! If using the `--generic_mod` option, the emitted `generic.rs` needs to be moved to `src`, and
//! [`form`](https://github.com/djmcgill/form) commit fcb397a or newer is required for splitting
//! the emitted `lib.rs`.
//!
//! ## target = cortex-m
//!
//! When targeting the Cortex-M architecture, `svd2rust` will generate three files in the current
//! directory:
//!
//! - `build.rs`, build script that places `device.x` somewhere the linker can find.
//! - `device.x`, linker script that weakly aliases all the interrupt handlers to the default
//! exception handler (`DefaultHandler`).
//! - `lib.rs`, the generated code.
//!
//! All these files must be included in the same device crate. The `lib.rs` file contains several
//! inlined modules and its not formatted. It's recommended to split it out using the [`form`] tool
//! and then format the output using `rustfmt` / `cargo fmt`:
//!
//! [`form`]: https://crates.io/crates/form
//!
//! ``` text
//! $ svd2rust -i STM32F30x.svd
//!
//! $ rm -rf src
//!
//! $ form -i lib.rs -o src/ && rm lib.rs
//!
//! $ cargo fmt
//! ```
//!
//! The resulting crate must provide an opt-in `rt` feature and depend on these crates:
//!
//! - [`critical-section`](https://crates.io/crates/critical-section) v1.x
//! - [`cortex-m`](https://crates.io/crates/cortex-m) >=v0.7.6
//! - [`cortex-m-rt`](https://crates.io/crates/cortex-m-rt) >=v0.6.13
//! - [`vcell`](https://crates.io/crates/vcell) >=v0.1.2
//!
//! Furthermore, the "device" feature of `cortex-m-rt` must be enabled when the `rt` feature
//! is enabled. The `Cargo.toml` of the device crate will look like this:
//!
//! ``` toml
//! [dependencies]
//! critical-section = { version = "1.0", optional = true }
//! cortex-m = "0.7.6"
//! cortex-m-rt = { version = "0.6.13", optional = true }
//! vcell = "0.1.2"
//!
//! [features]
//! rt = ["cortex-m-rt/device"]
//! ```
//!
//! ## target = msp430
//!
//! MSP430 does not natively use the SVD format. However, SVD files can be generated using the
//! [`msp430_svd` application](https://github.com/pftbest/msp430_svd). Most header and DSLite
//! files provided by TI are mirrored in the repository of `msp430_svd`. The application does
//! not need to be installed; the `msp430gen` command below can be substituted by
//! `cargo run -- msp430g2553 > msp430g2553.svd` from the `msp430_svd` crate root.
//!
//! When targeting the MSP430 architecture `svd2rust` will _also_ generate three files in the
//! current directory:
//!
//! - `build.rs`, build script that places `device.x` somewhere the linker can find.
//! - `device.x`, linker script that weakly aliases all the interrupt handlers to the default
//! exception handler (`DefaultHandler`).
//! - `lib.rs`, the generated code.
//!
//! All these files must be included in the same device crate. The `lib.rs` file contains several
//! inlined modules and its not formatted. It's recommend to split it out using the [`form`] tool
//! and then format the output using `rustfmt` / `cargo fmt`:
//!
//! [`form`]: https://crates.io/crates/form
//!
//! ``` text
//! $ msp430gen msp430g2553 > msp430g2553.svd
//!
//! $ xmllint -format msp430g2553.svd --output msp430g2553.svd
//!
//! $ svd2rust -g --target=msp430 -i msp430g2553.svd
//!
//! $ rm -rf src
//!
//! $ form -i lib.rs -o src/ && rm lib.rs
//!
//! $ mv generic.rs src/
//!
//! $ cargo fmt
//! ```
//!
//! The resulting crate must provide opt-in `rt` feature and depend on these crates:
//!
//! - [`critical-section`](https://crates.io/crates/critical-section) v1.x
//! - [`msp430`](https://crates.io/crates/msp430) v0.4.x
//! - [`msp430-rt`](https://crates.io/crates/msp430-rt) v0.4.x
//! - [`vcell`](https://crates.io/crates/vcell) v0.1.x
//!
//! The "device" feature of `msp430-rt` must be enabled when the `rt` feature is
//! enabled. The `Cargo.toml` of the device crate will look like this:
//!
//! ``` toml
//! [dependencies]
//! critical-section = { version = "1.0", optional = true }
//! msp430 = "0.4.0"
//! msp430-rt = { version = "0.4.0", optional = true }
//! vcell = "0.1.0"
//!
//! [features]
//! rt = ["msp430-rt/device"]
//! ```
//!
//! ## Other targets
//!
//! When the target is riscv or none `svd2rust` will emit only the `lib.rs` file. Like in
//! the `cortex-m` case, we recommend you use `form` and `rustfmt` on the output.
//!
//! The resulting crate must provide an opt-in `rt` feature and depend on these crates:
//!
//! - [`critical-section`](https://crates.io/crates/critical-section) v1.x
//! - [`riscv`](https://crates.io/crates/riscv) v0.9.x (if target is RISC-V)
//! - [`riscv-rt`](https://crates.io/crates/riscv-rt) v0.9.x (if target is RISC-V)
//! - [`vcell`](https://crates.io/crates/vcell) v0.1.x
//!
//! The `*-rt` dependencies must be optional only enabled when the `rt` feature is enabled. The
//! `Cargo.toml` of the device crate will look like this for a RISC-V target:
//!
//! ``` toml
//! [dependencies]
//! critical-section = { version = "1.0", optional = true }
//! riscv = "0.9.0"
//! riscv-rt = { version = "0.9.0", optional = true }
//! vcell = "0.1.0"
//!
//! [features]
//! rt = ["riscv-rt"]
//! ```
//!
//! # Peripheral API
//!
//! To use a peripheral first you must get an *instance* of the peripheral. All the device
//! peripherals are modeled as singletons (there can only ever be, at most, one instance of any
//! one of them) and the only way to get an instance of them is through the `Peripherals::take`
//! method, enabled via the `critical-section` feature on the generated crate.
//!
//! ```ignore
//! let mut peripherals = stm32f30x::Peripherals::take().unwrap();
//! peripherals.GPIOA.odr.write(|w| w.bits(1));
//! ```
//!
//! This method can only be successfully called *once* -- that's why the method returns an `Option`.
//! Subsequent calls to the method will result in a `None` value being returned.
//!
//! ```ignore
//! let ok = stm32f30x::Peripherals::take().unwrap();
//! let panics = stm32f30x::Peripherals::take().unwrap();
//! ```
//!
//! This method needs an implementation of `critical-section`. You can implement it yourself or
//! use the implementation provided by the target crate like `cortex-m`, `riscv` and `*-hal` crates.
//! See more details in the [`critical-section`](https://crates.io/crates/critical-section) crate documentation.
//!
//! The singleton property can be *unsafely* bypassed using the `ptr` static method which is
//! available on all the peripheral types. This method is useful for implementing safe higher
//! level abstractions.
//!
//! ```ignore
//! struct PA0 { _0: () }
//! impl PA0 {
//!     fn is_high(&self) -> bool {
//!         // NOTE(unsafe) actually safe because this is an atomic read with no side effects
//!         unsafe { (*GPIOA::ptr()).idr.read().bits() & 1 != 0 }
//!     }
//!
//!     fn is_low(&self) -> bool {
//!         !self.is_high()
//!     }
//! }
//! struct PA1 { _0: () }
//! // ..
//!
//! fn configure(gpioa: GPIOA) -> (PA0, PA1, ..) {
//!     // configure all the PAx pins as inputs
//!     gpioa.moder.reset();
//!     // the GPIOA proxy is destroyed here now the GPIOA register block can't be modified
//!     // thus the configuration of the PAx pins is now frozen
//!     drop(gpioa);
//!     (PA0 { _0: () }, PA1 { _0: () }, ..)
//! }
//! ```
//!
//! Each peripheral proxy `deref`s to a `RegisterBlock` struct that represents a piece of device
//! memory. Each field in this `struct` represents one register in the register block associated to
//! the peripheral.
//!
//! ```ignore
//! /// Inter-integrated circuit
//! pub mod i2c1 {
//!     /// Register block
//!     pub struct RegisterBlock {
//!         /// 0x00 - Control register 1
//!         pub cr1: CR1,
//!         /// 0x04 - Control register 2
//!         pub cr2: CR2,
//!         /// 0x08 - Own address register 1
//!         pub oar1: OAR1,
//!         /// 0x0c - Own address register 2
//!         pub oar2: OAR2,
//!         /// 0x10 - Timing register
//!         pub timingr: TIMINGR,
//!         /// Status register 1
//!         pub timeoutr: TIMEOUTR,
//!         /// Interrupt and Status register
//!         pub isr: ISR,
//!         /// 0x1c - Interrupt clear register
//!         pub icr: ICR,
//!         /// 0x20 - PEC register
//!         pub pecr: PECR,
//!         /// 0x24 - Receive data register
//!         pub rxdr: RXDR,
//!         /// 0x28 - Transmit data register
//!         pub txdr: TXDR,
//!     }
//! }
//! ```
//!
//! # `read` / `modify` / `write` API
//!
//! Each register in the register block, e.g. the `cr1` field in the `I2C` struct, exposes a
//! combination of the `read`, `modify`, and `write` methods. Which method exposes each register
//! depends on whether the register is read-only, read-write or write-only:
//!
//! - read-only registers only expose the `read` method.
//! - write-only registers only expose the `write` method.
//! - read-write registers expose all the methods: `read`, `modify`, and
//!   `write`.
//!
//! Below shows signatures of each of these methods:
//!
//! (using `I2C`'s `CR2` register as an example)
//!
//! ```ignore
//! impl CR2 {
//!     /// Modifies the contents of the register
//!     pub fn modify<F>(&self, f: F)
//!     where
//!         for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W
//!     {
//!         ..
//!     }
//!
//!     /// Reads the contents of the register
//!     pub fn read(&self) -> R { .. }
//!
//!     /// Writes to the register
//!     pub fn write<F>(&self, f: F)
//!     where
//!         F: FnOnce(&mut W) -> &mut W,
//!     {
//!         ..
//!     }
//! }
//! impl crate::ResetValue for CR2 {
//!     type Type = u32;
//!     fn reset_value() -> Self::Type { 0 }
//! }
//! ```
//!
//! ## `read`
//!
//! The `read` method "reads" the register using a **single**, volatile `LDR` instruction and
//! returns a proxy `R` struct that allows access to only the readable bits (i.e. not to the
//! reserved or write-only bits) of the `CR2` register:
//!
//! ```ignore
//! /// Value read from the register
//! impl R {
//!     /// Bit 0 - Slave address bit 0 (master mode)
//!     pub fn sadd0(&self) -> SADD0_R { .. }
//!
//!     /// Bits 1:7 - Slave address bit 7:1 (master mode)
//!     pub fn sadd1(&self) -> SADD1_R { .. }
//!
//!     (..)
//! }
//! ```
//!
//! Usage looks like this:
//!
//! ```ignore
//! // is the SADD0 bit of the CR2 register set?
//! if i2c1.c2r.read().sadd0().bit() {
//!     // yes
//! } else {
//!     // no
//! }
//! ```
//!
//! ## `reset`
//!
//! The `ResetValue` trait provides `reset_value` which returns the value of the `CR2`
//! register after a reset. This value can be used to modify the
//! writable bitfields of the `CR2` register or reset it to its initial state.
//! Usage looks like this:
//!
//! ```ignore
//! if i2c1.c2r.write().reset()
//! ```
//!
//! ## `write`
//!
//! On the other hand, the `write` method writes some value to the register using a **single**,
//! volatile `STR` instruction. This method involves a `W` struct that only allows constructing
//! valid states of the `CR2` register.
//!
//! ```ignore
//! impl W {
//!     /// Bits 1:7 - Slave address bit 7:1 (master mode)
//!     pub fn sadd1(&mut self) -> SADD1_W { .. }
//!
//!     /// Bit 0 - Slave address bit 0 (master mode)
//!     pub fn sadd0(&mut self) -> SADD0_W { .. }
//! }
//! ```
//!
//! The `write` method takes a closure with signature `(&mut W) -> &mut W`. If the "identity
//! closure", `|w| w`, is passed then the `write` method will set the `CR2` register to its reset
//! value. Otherwise, the closure specifies how the reset value will be modified *before* it's
//! written to `CR2`.
//!
//! Usage looks like this:
//!
//! ```ignore
//! // Starting from the reset value, `0x0000_0000`, change the bitfields SADD0
//! // and SADD1 to `1` and `0b0011110` respectively and write that to the
//! // register CR2.
//! i2c1.cr2.write(|w| unsafe { w.sadd0().bit(true).sadd1().bits(0b0011110) });
//! // NOTE ^ unsafe because you could be writing a reserved bit pattern into
//! // the register. In this case, the SVD doesn't provide enough information to
//! // check whether that's the case.
//!
//! // NOTE The argument to `bits` will be *masked* before writing it to the
//! // bitfield. This makes it impossible to write, for example, `6` to a 2-bit
//! // field; instead, `6 & 3` (i.e. `2`) will be written to the bitfield.
//! ```
//!
//! ## `modify`
//!
//! Finally, the `modify` method performs a **single** read-modify-write
//! operation that involves **one** read (`LDR`) to the register, modifying the
//! value and then a **single** write (`STR`) of the modified value to the
//! register. This method accepts a closure that specifies how the CR2 register
//! will be modified (the `w` argument) and also provides access to the state of
//! the register before it's modified (the `r` argument).
//!
//! Usage looks like this:
//!
//! ```ignore
//! // Set the START bit to 1 while KEEPING the state of the other bits intact
//! i2c1.cr2.modify(|_, w| unsafe { w.start().bit(true) });
//!
//! // TOGGLE the STOP bit, all the other bits will remain untouched
//! i2c1.cr2.modify(|r, w| w.stop().bit(!r.stop().bit()));
//! ```
//!
//! # enumeratedValues
//!
//! If your SVD uses the `<enumeratedValues>` feature, then the API will be *extended* to provide
//! even more type safety. This extension is backward compatible with the original version so you
//! could "upgrade" your SVD by adding, yourself, `<enumeratedValues>` to it and then use `svd2rust`
//! to re-generate a better API that doesn't break the existing code that uses that API.
//!
//! The new `read` API returns an enum that you can match:
//!
//! ```ignore
//! match gpioa.dir.read().pin0().variant() {
//!     gpioa::dir::PIN0_A::Input => { .. },
//!     gpioa::dir::PIN0_A::Output => { .. },
//! }
//! ```
//!
//! or test for equality
//!
//! ```ignore
//! if gpioa.dir.read().pin0().variant() == gpio::dir::PIN0_A::Input {
//!     ..
//! }
//! ```
//!
//! It also provides convenience methods to check for a specific variant without
//! having to import the enum:
//!
//! ```ignore
//! if gpioa.dir.read().pin0().is_input() {
//!     ..
//! }
//!
//! if gpioa.dir.read().pin0().is_output() {
//!     ..
//! }
//! ```
//!
//! The original `bits` method is available as well:
//!
//! ```ignore
//! if gpioa.dir.read().pin0().bits() == 0 {
//!     ..
//! }
//! ```
//!
//! And the new `write` API provides similar additions as well: `variant` lets you pick the value to
//! write from an `enum`eration of the possible ones:
//!
//! ```ignore
//! // enum PIN0_A { Input, Output }
//! gpioa.dir.write(|w| w.pin0().variant(gpio::dir::PIN0_A::Output));
//! ```
//!
//! There are convenience methods to pick one of the variants without having to
//! import the enum:
//!
//! ```ignore
//! gpioa.dir.write(|w| w.pin0().output());
//! ```
//!
//! The `bits` (or `bit`) method is still available but will become safe if it's
//! impossible to write a reserved bit pattern into the register:
//!
//! ```ignore
//! // safe because there are only two options: `0` or `1`
//! gpioa.dir.write(|w| w.pin0().bit(true));
//! ```
//!
//! # Interrupt API
//!
//! SVD files also describe the device interrupts. svd2rust generated crates expose an enumeration
//! of the device interrupts as an `Interrupt` `enum` in the root of the crate. This `enum` can be
//! used with the `cortex-m` crate `NVIC` API.
//!
//! ```ignore
//! use cortex_m::peripheral::Peripherals;
//! use stm32f30x::Interrupt;
//!
//! let p = Peripherals::take().unwrap();
//! let mut nvic = p.NVIC;
//!
//! nvic.enable(Interrupt::TIM2);
//! nvic.enable(Interrupt::TIM3);
//! ```
//!
//! ## the `rt` feature
//!
//! If the `rt` Cargo feature of the svd2rust generated crate is enabled, the crate will populate the
//! part of the vector table that contains the interrupt vectors and provide an
//! [`interrupt!`](macro.interrupt.html) macro (non Cortex-M/MSP430 targets) or [`interrupt`] attribute
//! (Cortex-M or [MSP430](https://docs.rs/msp430-rt-macros/0.1/msp430_rt_macros/attr.interrupt.html))
//! that can be used to register interrupt handlers.
//!
//! [`interrupt`]: https://docs.rs/cortex-m-rt-macros/0.1/cortex_m_rt_macros/attr.interrupt.html
//!
//! ## the `--atomics` flag
//!
//! The `--atomics` flag can be passed to `svd2rust` to extends the register API with operations to
//! atomically set, clear, and toggle specific bits.  The atomic operations allow limited
//! modification of register bits without read-modify-write sequences. As such, they can be
//! concurrently called on different bits in the same register without data races. This flag won't
//! work for RISCV chips without the atomic extension.
//!
//! `portable-atomic` v0.3.16 must be added to the dependencies, with default features off to
//! disable the `fallback` feature.
//!
//! Usage examples:
//!
//! ```ignore
//! // These can be called from different contexts even though they are modifying the same register
//! P1.p1out.set_bits(|w| unsafe { w.bits(1 << 1) });
//! P1.p1out.clear_bits(|w| unsafe { w.bits(!(1 << 2)) });
//! P1.p1out.toggle_bits(|w| unsafe { w.bits(1 << 4) });
//! ```
#![recursion_limit = "128"]

use quote::quote;
use svd_parser::svd;

pub mod generate;
pub mod util;

pub use crate::util::{Config, Target};

#[non_exhaustive]
pub struct Generation {
    pub lib_rs: String,
    pub device_specific: Option<DeviceSpecific>,
}

#[non_exhaustive]
pub struct DeviceSpecific {
    pub device_x: String,
    pub build_rs: String,
}

use anyhow::{Context, Result};

#[derive(Debug, thiserror::Error)]
pub enum SvdError {
    #[error("Cannot format crate")]
    Fmt,
    #[error("Cannot render SVD device")]
    Render,
}

/// Generates rust code for the specified svd content.
pub fn generate(input: &str, config: &Config) -> Result<Generation> {
    use std::fmt::Write;

    let device = load_from(input, config)?;
    let mut device_x = String::new();
    let items =
        generate::device::render(&device, config, &mut device_x).map_err(|_| SvdError::Render)?;

    let mut lib_rs = String::new();
    writeln!(
        &mut lib_rs,
        "{}",
        quote! {
            #items
        }
    )
    .or(Err(SvdError::Fmt))?;

    let device_specific = if device_x.is_empty() {
        None
    } else {
        Some(DeviceSpecific {
            device_x,
            build_rs: util::build_rs().to_string(),
        })
    };

    Ok(Generation {
        lib_rs,
        device_specific,
    })
}

/// Load a [Device] from a string slice with given [config](crate::util::Config).
pub fn load_from(input: &str, config: &crate::util::Config) -> Result<svd::Device> {
    use self::util::SourceType;
    use svd_parser::ValidateLevel;

    let mut device = match config.source_type {
        SourceType::Xml => {
            let mut parser_config = svd_parser::Config::default();
            parser_config.validate_level = if config.strict {
                ValidateLevel::Strict
            } else {
                ValidateLevel::Weak
            };

            svd_parser::parse_with_config(input, &parser_config)
                .with_context(|| "Error parsing SVD XML file".to_string())?
        }
        #[cfg(feature = "yaml")]
        SourceType::Yaml => serde_yaml::from_str(input)
            .with_context(|| "Error parsing SVD YAML file".to_string())?,
        #[cfg(feature = "json")]
        SourceType::Json => serde_json::from_str(input)
            .with_context(|| "Error parsing SVD JSON file".to_string())?,
    };
    svd_parser::expand_properties(&mut device);
    Ok(device)
}

/// Assigns a handler to an interrupt
///
/// **NOTE** The `interrupt!` macro on Cortex-M and MSP430 device crates is closer in syntax to the
/// [`exception!`] macro. This documentation doesn't apply to it. For the exact syntax of this macro
/// check the documentation of the device crate you are using.
///
/// [`exception!`]: https://docs.rs/cortex-m-rt/0.5.0/cortex_m_rt/macro.exception.html
///
/// This macro takes two arguments: the name of an interrupt and the path to the
/// function that will be used as the handler of that interrupt. That function
/// must have signature `fn()`.
///
/// Optionally, a third argument may be used to declare interrupt local data.
/// The handler will have exclusive access to these *local* variables on each
/// invocation. If the third argument is used then the signature of the handler
/// function must be `fn(&mut $NAME::Locals)` where `$NAME` is the first argument
/// passed to the macro.
///
/// # Example
///
/// ``` ignore
/// interrupt!(TIM2, periodic);
///
/// fn periodic() {
///     print!(".");
/// }
///
/// interrupt!(TIM3, tick, locals: {
///     tick: bool = false;
/// });
///
/// fn tick(locals: &mut TIM3::Locals) {
///     locals.tick = !locals.tick;
///
///     if locals.tick {
///         println!("Tick");
///     } else {
///         println!("Tock");
///     }
/// }
/// ```
#[macro_export]
macro_rules! interrupt {
    ($NAME:ident, $path:path) => {};
    ($NAME:ident, $path:path, locals: {
        $($lvar:ident: $lty:ty = $lval:expr;)+
    }) => {};
}