1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! # summon
//!
//! A logic engine designed to magically give you what you ask for
//!
//! ```
//! # #![feature(const_type_id)]
//! use summon::{Tome, circle};
//!
//! #[derive(Clone)]
//! struct ConstantAcceleration(f64);
//! #[derive(Clone)]
//! struct InitialVelocity(f64);
//! #[derive(Clone)]
//! struct InitialPosition(f64);
//! #[derive(Clone)]
//! struct Time(f64);
//!
//! #[derive(Debug)]
//! struct Distance(f64);
//!
//! // The tome is where all the logic and conversions are written in your code.
//! let mut tome = Tome::new();
//!
//! // You can use ether() to give types as givens.
//! tome.ether(ConstantAcceleration(3.0));
//! tome.ether(InitialVelocity(5.0));
//! tome.ether(InitialPosition(6.0));
//! tome.ether(Time(4.0));
//!
//! // Inscribe is used to describe a conversion between types.
//! // Several macros are provided for convenience.
//! // This one lets you destructure and type construct freely.
//! tome.inscribe(
//!     circle!(ConstantAcceleration(a), InitialVelocity(v), InitialPosition(p), Time(t) => Distance(0.5 * a * t.powi(2) + v * t + p))
//! );
//!
//! // So long as it is possible to produce the result with the given inscriptions, it will be produced.
//! let summoned = tome.summon::<Distance>().unwrap().0;
//! assert_eq!(
//!     0.5 * 3.0 * 4.0f64.powi(2) + 5.0 * 4.0 + 6.0,
//!     summoned,
//! );
//! ```

use std::any::{Any, TypeId};
use std::collections::HashMap;
use std::iter::FromIterator;

/// Transmutations require ingredients and produce a product. This is usually a function.
pub trait Transmutation {
    fn ingredients(&self) -> &'static [TypeId];
    fn product(&self) -> TypeId;
    fn transmute(&self, inputs: &[&dyn Any]) -> Box<dyn Any>;
}

struct Ether<T>(T);

impl<T: Clone + 'static> Transmutation for Ether<T> {
    fn ingredients(&self) -> &'static [TypeId] {
        &[]
    }
    fn product(&self) -> TypeId {
        TypeId::of::<T>()
    }
    fn transmute(&self, _: &[&dyn Any]) -> Box<dyn Any> {
        Box::new(self.0.clone())
    }
}

#[macro_export]
#[doc(hidden)]
macro_rules! transmutation_impl {
    (($($arg_real_pat:pat in $arg_ty:tt),*) -> $return_ty:tt $body:tt) => {{
        paste::expr! {{
            use std::any::{Any, TypeId};
            struct Temporary<F>(F);
            const TEMPORARY_INGREDIENTS: &[TypeId] = &[$(TypeId::of::<$arg_ty>()),*];
            impl<F: Fn($(&$arg_ty),*) -> $return_ty> $crate::Transmutation for Temporary<F> {
                fn ingredients(&self) -> &'static [TypeId] {
                    TEMPORARY_INGREDIENTS
                }
                fn product(&self) -> TypeId {
                    TypeId::of::<$return_ty>()
                }
                fn transmute(&self, inputs: &[&dyn Any]) -> Box<dyn Any> {
                    if let [$([<temp_ident_ $arg_ty>]),*] = inputs {
                        $(let [<temp_ident_ $arg_ty>] = [<temp_ident_ $arg_ty>].downcast_ref::<$arg_ty>().expect("transmute passed an incorrect type");)*
                        Box::new((self.0)($([<temp_ident_ $arg_ty>]),*)) as Box<dyn Any>
                    } else {
                        panic!("transmute passed incorrect number of arguments (expected: {}, found: {})", self.ingredients().len(), inputs.len());
                    }
                }
            }
            Temporary(|$($arg_real_pat: &$arg_ty),*| -> $return_ty $body)
        }}
    }};
}

/// Use this to inscribe a transmutation between a set of input types and an output type.
///
/// ## Pattern form
///
/// This form allows seamless destructuring of input types and and type constructing the output.
/// This is the prefered form, as it avoids the need to repeat yourself.
///
/// ```
/// # #![feature(const_type_id)]
/// use summon::{Tome, circle};
/// #[derive(Clone)]
/// struct Normal(u32);
/// struct Double(u32);
/// struct Half(u32);
/// let mut tome = Tome::new();
/// tome.ether(Normal(4));
/// tome.inscribe(circle!(Normal(n) => Double(n * 2)));
/// tome.inscribe(circle!(Normal(n) => Half(n / 2)));
/// assert_eq!(8, tome.summon::<Double>().unwrap().0);
/// assert_eq!(2, tome.summon::<Half>().unwrap().0);
/// ```
///
/// ## Closure form
///
/// This form offers the maximum flexibility, and looks like a normal closure. You can only use references as parameters.
/// This form leads to some repitition, but it is currently the only way to combine tags with other data due to macro limitations.
///
/// ```
/// # #![feature(const_type_id)]
/// use summon::{Tome, circle};
/// #[derive(Clone)]
/// struct Normal(u32);
/// struct Double(u32);
/// struct Half(u32);
/// let mut tome = Tome::new();
/// tome.ether(Normal(4));
/// tome.inscribe(circle!(|n: &Normal| -> Double { Double(n.0 * 2) }));
/// tome.inscribe(circle!(|n: &Normal| -> Half { Half(n.0 / 2) }));
/// assert_eq!(8, tome.summon::<Double>().unwrap().0);
/// assert_eq!(2, tome.summon::<Half>().unwrap().0);
/// ```
///
/// ## Tag form
///
/// This form is useful when you have some logic you want to perform. Multiple ways to produce an output is equivalent to OR.
/// Multiple arguments to produce a single output is equivalent to an AND. There is currently no NOT or XOR equivalent (coming soon).
///
/// ```
/// # #![feature(const_type_id)]
/// use summon::{Tome, circle};
/// #[derive(Clone)]
/// struct A;
/// struct B;
/// let mut tome = Tome::new();
/// tome.ether(A);
/// tome.inscribe(circle!(A => B));
/// tome.summon::<B>().unwrap();
/// ```
#[macro_export]
macro_rules! circle {
    ($($arg_name:ty),* => $return_ty:tt) => {
        $crate::transmutation_impl!(($(_ in $arg_name),*) -> $return_ty { $return_ty })
    };
    ($($arg_name:tt $arg_pat:tt),* => $return_ty:tt $return_pat:tt) => {{
        $crate::transmutation_impl!(($($arg_name $arg_pat in $arg_name),*) -> $return_ty { $return_ty $return_pat })
    }};
    (|$($arg_name:tt: &$arg_ty:ty),*| -> $return_ty:tt $body:tt) => {{
        $crate::transmutation_impl!(($($arg_name in $arg_ty),*) -> $return_ty $body)
    }};
}

/// This is where all of the transmutation circles are inscribed.
#[derive(Default)]
pub struct Tome {
    /// Transmutation circles are organized by their products in the tomb.
    circles: HashMap<TypeId, Vec<Box<dyn Transmutation>>>,
}

impl Tome {
    /// Create an empty tome.
    pub fn new() -> Self {
        Self::default()
    }

    /// Inscribe a note about a natural transmutation into the tome.
    pub fn inscribe<T: Transmutation + 'static>(&mut self, circle: T) {
        let product_circles = self.circles.entry(circle.product()).or_default();
        product_circles.push(Box::new(circle));
        product_circles.sort_by_key(|c| c.ingredients().len());
    }

    /// Create a note about how to create something out of the ether.
    pub fn ether<T: Clone + 'static>(&mut self, item: T) {
        self.inscribe(Ether(item));
    }

    /// Give me what I want.
    pub fn summon<T: 'static>(&self) -> Option<T> {
        // Preserve all the materials we need and the thing we are summoning.
        let materials = self.preserve::<T>()?;
        // Drop all the intermediate materials to get only the desired one.
        Some(materials.into_material::<T>())
    }

    /// Give me what I want and more.
    fn preserve<T: 'static>(&self) -> Option<Materials> {
        // Find a recipe to create the item. This may fail.
        let recipe: Recipe = self.research::<T>()?;
        // Perform the whole recipe. This cannot fail, excpet via panic.
        let materials: Materials = recipe.steps.into_iter().collect();
        // Create all the materials in the recipe.
        Some(materials)
    }

    fn research<T: 'static>(&self) -> Option<Recipe<'_>> {
        self.research_id(TypeId::of::<T>())
    }

    fn research_id(&self, id: TypeId) -> Option<Recipe<'_>> {
        self.circles.get(&id).and_then(|possibilities| {
            possibilities.iter().find_map(|circle| {
                let ingredients = circle.ingredients();
                eprintln!("ingredients: {}", ingredients.len());
                ingredients
                    .iter()
                    .fold(Some(Recipe::default()), |recipe, &ingredient| {
                        recipe.and_then(|recipe| {
                            self.research_id(ingredient).map(|next| recipe.join(next))
                        })
                    })
                    .map(|recipe| recipe.join((**circle).into()))
            })
        })
    }
}

#[derive(Default)]
struct Recipe<'a> {
    steps: Vec<&'a dyn Transmutation>,
    products: HashMap<TypeId, usize>,
}

impl<'a> From<&'a dyn Transmutation> for Recipe<'a> {
    fn from(circle: &'a dyn Transmutation) -> Self {
        let mut recipe = Self::default();
        recipe.products.insert(circle.product(), 0);
        recipe.steps.push(circle);
        recipe
    }
}

impl<'a> Recipe<'a> {
    fn join(self, other: Self) -> Self {
        let Self {
            mut steps,
            mut products,
        } = self;
        let Self {
            steps: other_steps,
            products: other_products,
        } = other;
        for (product, step) in other_products {
            products.entry(product).or_insert_with(|| {
                steps.push(other_steps[step]);
                steps.len() - 1
            });
        }
        Self { steps, products }
    }
}

#[derive(Default)]
pub struct Materials {
    materials: HashMap<TypeId, Box<dyn Any>>,
}

impl Materials {
    fn new() -> Self {
        Self::default()
    }

    fn get(&self, id: TypeId) -> Option<&dyn Any> {
        self.materials.get(&id).map(|b| &**b)
    }

    fn apply(&mut self, recipe: &dyn Transmutation) {
        let product_type = recipe.product();
        let ingredients: Vec<&dyn Any> = recipe
            .ingredients()
            .iter()
            .map(|&ingredient| self.get(ingredient).unwrap())
            .collect();
        let product = recipe.transmute(&ingredients);
        self.materials.insert(product_type, product);
    }

    fn into_material<T: 'static>(mut self) -> T {
        *self
            .materials
            .remove(&TypeId::of::<T>())
            .expect("material was not found")
            .downcast::<T>()
            .unwrap()
    }
}

impl<'a> FromIterator<&'a dyn Transmutation> for Materials {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = &'a dyn Transmutation>,
    {
        let mut materials = Self::new();
        for recipe in iter {
            materials.apply(recipe);
        }
        materials
    }
}