1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// -*- mode: rust; -*-
//
// To the extent possible under law, the authors have waived all copyright and
// related or neighboring rights to subtle, using the Creative Commons "CC0"
// public domain dedication.  See
// <http://creativecommons.org/publicdomain/zero/.0/> for full details.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Pure-Rust traits and utilities for constant-time cryptographic implementations.


extern crate core;

#[cfg(feature = "std")]
extern crate num_traits;


#[cfg(feature = "std")]
use core::ops::BitAnd;
#[cfg(feature = "std")]
use core::ops::BitOr;
#[cfg(feature = "std")]
use core::ops::Not;
#[cfg(feature = "std")]
use core::ops::Sub;

use core::ops::Neg;

#[cfg(feature = "std")]
use num_traits::One;
#[cfg(feature = "std")]
use num_traits::Signed;

/// A `Mask` represents a choice which is not a boolean.
pub type Mask = u8;

/// Trait for items which can be conditionally assigned in constant time.
pub trait CTAssignable {
    /// If `choice == 1u8`, assign `other` to `self`.
    /// Otherwise, leave `self` unchanged.
    /// Executes in constant time.
    fn conditional_assign(&mut self, other: &Self, choice: Mask);
}

/// Trait for items whose equality to another item may be tested in constant time.
pub trait CTEq {
    /// Determine if two items are equal in constant time.
    ///
    /// # Returns
    ///
    /// `1u8` if the two items are equal, and `0u8` otherwise.
    fn ct_eq(&self, other: &Self) -> Mask;
}

/// Trait for items which can be conditionally negated in constant time.
///
/// Note: it is not necessary to implement this trait, as a generic
/// implementation is provided.
pub trait CTNegatable {
    /// Conditionally negate an element if `choice == 1u8`.
    fn conditional_negate(&mut self, choice: Mask);
}

impl<T> CTNegatable for T
    where T: CTAssignable, for<'a> &'a T: Neg<Output=T>
{
    fn conditional_negate(&mut self, choice: Mask) {
        // Need to cast to eliminate mutability
        let self_neg: T = -(self as &T);
        self.conditional_assign(&self_neg, choice);
    }
}

/// Select `a` if `choice == 1` or select `b` if `choice == 0`, in constant time.
///
/// # Inputs
///
/// * `a`, `b`, and `choice` must be types for which bitwise-AND, and
///   bitwise-OR, bitwise-complement, subtraction, multiplicative identity,
///   copying, partial equality, and partial order comparison are defined.
/// * `choice`: If `choice` is equal to the multiplicative identity of the type
///   (i.e. `1u8` for `u8`, etc.), then `a` is returned.  If `choice` is equal
///   to the additive identity (i.e. `0u8` for `u8`, etc.) then `b` is returned.
///
/// # Warning
///
/// The behaviour of this function is undefined if `choice` is something other
/// than a multiplicative identity or additive identity (i.e. `1u8` or `0u8`).
///
/// If you somehow manage to design a type which is not a signed integer, and
/// yet implements all the requisite trait bounds for this generic, it's your
/// problem if something breaks.
///
/// # Examples
///
/// This function should work for signed integer types:
///
/// ```
/// # extern crate subtle;
/// # use subtle::conditional_select;
/// # fn main() {
/// let a: i32 = 5;
/// let b: i32 = 13;
///
/// assert!(conditional_select(a, b, 0) == 13);
/// assert!(conditional_select(a, b, 1) == 5);
///
/// let c: i64 = 2343249123;
/// let d: i64 = 8723884895;
///
/// assert!(conditional_select(c, d, 0) == d);
/// assert!(conditional_select(c, d, 1) == c);
/// # }
/// ```
///
/// It does not work with `i128`s, however, because the `num` crate doesn't
/// implement `num::traits::Signed` for `i128`.
///
/// # TODO
///
/// Once `#[feature(specialization)]` is finished, we should rewrite this.  Or
/// find some other way to only implement it for types which we know work
/// correctly.
#[inline(always)]
#[cfg(feature = "std")]
pub fn conditional_select<T>(a: T, b: T, choice: T) -> T
    where T: PartialEq + PartialOrd + Copy +
             One + Signed + Sub<T, Output = T> + Not<Output = T> +
             BitAnd<T, Output = T> + BitOr<T, Output = T> {
    (!(choice - T::one()) & a) | ((choice - T::one()) & b)
}

/// Check equality of two bytes in constant time.
///
/// # Return
///
/// Returns `1u8` if `a == b` and `0u8` otherwise.
///
/// # Examples
///
/// ```
/// # extern crate subtle;
/// # use subtle::bytes_equal;
/// # fn main() {
/// let a: u8 = 0xDE;
/// let b: u8 = 0xAD;
///
/// assert_eq!(bytes_equal(a, b), 0);
/// assert_eq!(bytes_equal(a, a), 1);
/// # }
/// ```
#[inline(always)]
pub fn bytes_equal(a: u8, b: u8) -> Mask {
    let mut x: u8;

    x  = !(a ^ b);
    x &= x >> 4;
    x &= x >> 2;
    x &= x >> 1;
    x
}

/// Test if a byte is non-zero in constant time.
///
/// ```
/// # extern crate subtle;
/// # use subtle::byte_is_nonzero;
/// # fn main() {
/// let mut x: u8;
/// x = 0;
/// assert!(byte_is_nonzero(x) == 0);
/// x = 3;
/// assert!(byte_is_nonzero(x) == 1);
/// # }
/// ```
///
/// # Return
///
/// * If `b != 0`, returns `1u8`.
/// * If `b == 0`, returns `0u8`.
#[inline(always)]
pub fn byte_is_nonzero(b: u8) -> Mask {
    let mut x = b;
    x |= x >> 4;
    x |= x >> 2;
    x |= x >> 1;
    (x & 1)
}

/// Check equality of two arrays, `a` and `b`, in constant time.
///
/// There is an `assert!` that the two arrays are of equal length.  For
/// example, the following code is a programming error and will panic:
///
/// ```rust,ignore
/// let a: [u8; 3] = [0, 0, 0];
/// let b: [u8; 4] = [0, 0, 0, 0];
///
/// assert!(arrays_equal(&a, &b) == 1);
/// ```
///
/// However, if the arrays are equal length, but their contents do *not* match,
/// `0u8` will be returned:
///
/// ```
/// # extern crate subtle;
/// # use subtle::arrays_equal;
/// # fn main() {
/// let a: [u8; 3] = [0, 1, 2];
/// let b: [u8; 3] = [1, 2, 3];
///
/// assert!(arrays_equal(&a, &b) == 0);
/// # }
/// ```
///
/// And finally, if the contents *do* match, `1u8` is returned:
///
/// ```
/// # extern crate subtle;
/// # use subtle::arrays_equal;
/// # fn main() {
/// let a: [u8; 3] = [0, 1, 2];
/// let b: [u8; 3] = [0, 1, 2];
///
/// assert!(arrays_equal(&a, &b) == 1);
/// # }
/// ```
///
/// This function is commonly used in various cryptographic applications, such
/// as [signature verification](https://github.com/isislovecruft/ed25519-dalek/blob/0.3.2/src/ed25519.rs#L280),
/// among many other applications.
///
/// # Return
///
/// Returns `1u8` if `a == b` and `0u8` otherwise.
#[inline(always)]
pub fn arrays_equal(a: &[u8], b: &[u8]) -> Mask {
    assert_eq!(a.len(), b.len());

    let mut x: u8 = 0;

    for i in 0 .. a.len() {
        x |= a[i] ^ b[i];
    }
    bytes_equal(x, 0)
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[should_panic]
    fn arrays_equal_different_lengths() {
        let a: [u8; 3] = [0, 0, 0];
        let b: [u8; 4] = [0, 0, 0, 0];

        assert!(arrays_equal(&a, &b) == 1);
    }

    #[test]
    #[cfg(feature = "std")]
    fn conditional_select_i32() {
        let a: i32 = 5;
        let b: i32 = 13;

        assert_eq!(conditional_select(a, b, 0), 13);
        assert_eq!(conditional_select(a, b, 1), 5);
    }

    #[test]
    #[cfg(feature = "std")]
    fn conditional_select_i64() {
        let c: i64 = 2343249123;
        let d: i64 = 8723884895;

        assert_eq!(conditional_select(c, d, 0), d);
        assert_eq!(conditional_select(c, d, 1), c);
    }
}