1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
#![cfg_attr(not(test), no_std)]
#![cfg_attr(feature = "pattern", feature(pattern))]

//! Generalization of `str::find` to both `str` and `[_]`, see [`SubsliceExt`](trait.SubsliceExt.html) for docs.

#[cfg(test)]
extern crate core;

use core::cmp;
use core::usize;

extern crate memchr;

mod tw;
pub mod bmh;
#[cfg(feature = "test-set")]
pub mod set;

#[cfg(feature = "pattern")]
use core::str::pattern::{
    Pattern,
    Searcher,
    ReverseSearcher,
    SearchStep,
};

mod private { pub trait Sealed {} }

impl<A> private::Sealed for [A] {}
impl private::Sealed for str {}

/// Trait of types which can be searched for subsequences
pub trait SubsliceExt: private::Sealed {
    /// Find the first subslice of `self` which is equal to `other`, and return the index of its
    /// start.
    ///
    /// *O*(`self.len() + other.len()`) time
    fn find(&self, other: &Self) -> Option<usize>;

    /// Find the last subslice of `self` which is equal to `other`, and return the index of its
    /// start.
    ///
    /// *O*(`self.len() + other.len()`) time
    fn rfind(&self, other: &Self) -> Option<usize>;
}

impl<A: Ord> SubsliceExt for [A] {
    #[inline]
    fn find(&self, other: &Self) -> Option<usize> {
        if other.is_empty() { Some(0) }
        else if other.len() == 1 { self.iter().position(|a| *a == other[0]) }
        else {
            let mut searcher = TwoWaySearcher::new(other, self.len());
            let is_long = searcher.memory == usize::MAX;
            // write out `true` and `false` cases to encourage the compiler
            // to specialize the two cases separately.
            if is_long {
                searcher.next::<_, MatchOnly>(self, other, true).map(|t| t.0)
            } else {
                searcher.next::<_, MatchOnly>(self, other, false).map(|t| t.0)
            }
        }
    }

    #[inline]
    fn rfind(&self, other: &Self) -> Option<usize> {
        if other.is_empty() { Some(self.len()) }
        else if other.len() == 1 { self.iter().rposition(|a| *a == other[0]) }
        else {
            let mut searcher = TwoWaySearcher::new(other, self.len());
            let is_long = searcher.memory == usize::MAX;
            // write out `true` and `false` cases to encourage the compiler
            // to specialize the two cases separately.
            if is_long {
                searcher.next_back::<_, MatchOnly>(self, other, true).map(|t| t.0)
            } else {
                searcher.next_back::<_, MatchOnly>(self, other, false).map(|t| t.0)
            }
        }
    }
}

impl SubsliceExt for str {
    #[inline]
    fn find(&self, other: &Self) -> Option<usize> { self.as_bytes().find(other.as_bytes()) }

    #[inline]
    fn rfind(&self, other: &Self) -> Option<usize> { self.as_bytes().rfind(other.as_bytes()) }
}

/// Dummy wrapper for &str
#[doc(hidden)]
pub struct Str<'a>(pub &'a str);

#[cfg(feature = "pattern")]
/// Non-allocating substring search.
///
/// Will handle the pattern `""` as returning empty matches at each character
/// boundary.
impl<'a, 'b> Pattern<'a> for Str<'b> {
    type Searcher = StrSearcher<'a, 'b>;

    #[inline]
    fn into_searcher(self, haystack: &'a str) -> StrSearcher<'a, 'b> {
        StrSearcher::new(haystack, self.0)
    }

    /// Checks whether the pattern matches at the front of the haystack
    #[inline]
    fn is_prefix_of(self, haystack: &'a str) -> bool {
        let self_ = self.0;
        haystack.is_char_boundary(self_.len()) &&
            self_ == &haystack[..self_.len()]
    }

    /// Checks whether the pattern matches at the back of the haystack
    #[inline]
    fn is_suffix_of(self, haystack: &'a str) -> bool {
        let self_ = self.0;
        self_.len() <= haystack.len() &&
            haystack.is_char_boundary(haystack.len() - self_.len()) &&
            self_ == &haystack[haystack.len() - self_.len()..]
    }

}

#[derive(Clone, Debug)]
#[doc(hidden)]
/// Associated type for `<&str as Pattern<'a>>::Searcher`.
pub struct StrSearcher<'a, 'b> {
    haystack: &'a str,
    needle: &'b str,

    searcher: StrSearcherImpl,
}

#[derive(Clone, Debug)]
enum StrSearcherImpl {
    Empty(EmptyNeedle),
    TwoWay(TwoWaySearcher),
}

#[derive(Clone, Debug)]
struct EmptyNeedle {
    position: usize,
    end: usize,
    is_match_fw: bool,
    is_match_bw: bool,
}

impl<'a, 'b> StrSearcher<'a, 'b> {
    pub fn new(haystack: &'a str, needle: &'b str) -> StrSearcher<'a, 'b> {
        if needle.is_empty() {
            StrSearcher {
                haystack, needle,
                searcher: StrSearcherImpl::Empty(EmptyNeedle {
                    position: 0,
                    end: haystack.len(),
                    is_match_fw: true,
                    is_match_bw: true,
                }),
            }
        } else {
            StrSearcher {
                haystack, needle,
                searcher: StrSearcherImpl::TwoWay(
                    TwoWaySearcher::new(needle.as_bytes(), haystack.len())
                ),
            }
        }
    }
}

#[cfg(feature = "pattern")]
unsafe impl<'a, 'b> Searcher<'a> for StrSearcher<'a, 'b> {
    fn haystack(&self) -> &'a str { self.haystack }

    #[inline]
    fn next(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                // empty needle rejects every char and matches every empty string between them
                let is_match = searcher.is_match_fw;
                searcher.is_match_fw = !searcher.is_match_fw;
                let pos = searcher.position;
                match self.haystack[pos..].chars().next() {
                    _ if is_match => SearchStep::Match(pos, pos),
                    None => SearchStep::Done,
                    Some(ch) => {
                        searcher.position += ch.len_utf8();
                        SearchStep::Reject(pos, searcher.position)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                // TwoWaySearcher produces valid *Match* indices that split at char boundaries
                // as long as it does correct matching and that haystack and needle are
                // valid UTF-8
                // *Rejects* from the algorithm can fall on any indices, but we will walk them
                // manually to the next character boundary, so that they are utf-8 safe.
                if searcher.position == self.haystack.len() {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next::<_, RejectAndMatch>(self.haystack.as_bytes(),
                                                      self.needle.as_bytes(),
                                                      is_long)
                {
                    SearchStep::Reject(a, mut b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(b) {
                            b += 1;
                        }
                        searcher.position = cmp::max(b, searcher.position);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline(always)]
    fn next_match(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => {
                loop {
                    match self.next() {
                        SearchStep::Match(a, b) => return Some((a, b)),
                        SearchStep::Done => return None,
                        SearchStep::Reject(..) => { }
                    }
                }
            }

            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false` cases to encourage the compiler
                // to specialize the two cases separately.
                if is_long {
                    searcher.next::<_, MatchOnly>(self.haystack.as_bytes(),
                                                  self.needle.as_bytes(),
                                                  true)
                } else {
                    searcher.next::<_, MatchOnly>(self.haystack.as_bytes(),
                                                  self.needle.as_bytes(),
                                                  false)
                }
            }
        }
    }
}

#[cfg(feature = "pattern")]
unsafe impl<'a, 'b> ReverseSearcher<'a> for StrSearcher<'a, 'b> {
    #[inline]
    fn next_back(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                let is_match = searcher.is_match_bw;
                searcher.is_match_bw = !searcher.is_match_bw;
                let end = searcher.end;
                match self.haystack[..end].chars().next_back() {
                    _ if is_match => SearchStep::Match(end, end),
                    None => SearchStep::Done,
                    Some(ch) => {
                        searcher.end -= ch.len_utf8();
                        SearchStep::Reject(searcher.end, end)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                if searcher.end == 0 {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next_back::<_, RejectAndMatch>(self.haystack.as_bytes(),
                                                              self.needle.as_bytes(),
                                                              is_long)
                {
                    SearchStep::Reject(mut a, b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(a) {
                            a -= 1;
                        }
                        searcher.end = cmp::min(a, searcher.end);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline]
    fn next_match_back(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => {
                loop {
                    match self.next_back() {
                        SearchStep::Match(a, b) => return Some((a, b)),
                        SearchStep::Done => return None,
                        SearchStep::Reject(..) => { }
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false`, like `next_match`
                if is_long {
                    searcher.next_back::<_, MatchOnly>(self.haystack.as_bytes(),
                                                       self.needle.as_bytes(),
                                                       true)
                } else {
                    searcher.next_back::<_, MatchOnly>(self.haystack.as_bytes(),
                                                       self.needle.as_bytes(),
                                                       false)
                }
            }
        }
    }
}

/// The internal state of the two-way substring search algorithm.
#[derive(Clone, Debug)]
#[doc(hidden)]
pub struct TwoWaySearcher {
    // constants
    /// critical factorization index
    crit_pos: usize,
    /// critical factorization index for reversed needle
    crit_pos_back: usize,
    period: usize,

    // variables
    position: usize,
    end: usize,
    /// index into needle before which we have already matched
    memory: usize,
    /// index into needle after which we have already matched
    memory_back: usize,
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e. i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

    If the period is short, compute another factorization x = u' v' to use
    for reverse search, chosen instead so that |v'| < period(x).

*/
impl TwoWaySearcher {
    pub fn new<A: Ord>(needle: &[A], end: usize) -> TwoWaySearcher {
        let (crit_pos, period) = TwoWaySearcher::crit_params(needle);

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if needle[..crit_pos] == needle[period.. period + crit_pos] {
            // short period case -- the period is exact
            // compute a separate critical factorization for the reversed needle
            // x = u' v' where |v'| < period(x).
            //
            // This is sped up by the period being known already.
            // Note that a case like x = "acba" may be factored exactly forwards
            // (crit_pos = 1, period = 3) while being factored with approximate
            // period in reverse (crit_pos = 2, period = 2). We use the given
            // reverse factorization but keep the exact period.
            let crit_pos_back = needle.len() - cmp::max(
                TwoWaySearcher::reverse_maximal_suffix(needle, period, false),
                TwoWaySearcher::reverse_maximal_suffix(needle, period, true));

            TwoWaySearcher {
                crit_pos, crit_pos_back, period,

                position: 0,
                end,
                memory: 0,
                memory_back: needle.len(),
            }
        } else {
            // long period case -- we have an approximation to the actual period,
            // and don't use memorization.
            //
            // Approximate the period by lower bound max(|u|, |v|) + 1.
            // The critical factorization is efficient to use for both forward and
            // reverse search.

            TwoWaySearcher {
                crit_pos, crit_pos_back: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,

                position: 0,
                end,
                memory: usize::MAX, // Dummy value to signify that the period is long
                memory_back: usize::MAX,
            }
        }
    }

    /// Return the zero-based critical position and period of the provided needle.
    /// 
    /// The returned period is incorrect when the actual period is "long." In
    /// that case the approximation must be computed separately.
    #[inline(always)]
    fn crit_params<A: Ord>(needle: &[A]) -> (usize, usize) {
        let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);

        if crit_pos_false > crit_pos_true {
            (crit_pos_false, period_false)
        } else {
            (crit_pos_true, period_true)
        }
    }
    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline(always)]
    fn next<A: Eq, S>(&mut self, haystack: &[A], needle: &[A], long_period: bool)
        -> S::Output
        where S: TwoWayStrategy
    {
        // `next()` uses `self.position` as its cursor
        let old_pos = self.position;
        let needle_last = needle.len() - 1;
        'search: loop {
            // Check that we have room to search in
            // position + needle_last can not overflow if we assume slices
            // are bounded by isize's range.
            match haystack.get(self.position + needle_last) {
                Some(_) => (),
                None => {
                    self.position = haystack.len();
                    return S::rejecting(old_pos, self.position);
                }
            };

            if S::use_early_reject() && old_pos != self.position {
                return S::rejecting(old_pos, self.position);
            }

            // See if the right part of the needle matches
            let start = if long_period { self.crit_pos }
                        else { cmp::max(self.crit_pos, self.memory) };
            for i in start..needle.len() {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in (start..self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;

            // Note: add self.period instead of needle.len() to have overlapping matches
            self.position += needle.len();
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for overlapping matches
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Follows the ideas in `next()`.
    //
    // The definitions are symmetrical, with period(x) = period(reverse(x))
    // and local_period(u, v) = local_period(reverse(v), reverse(u)), so if (u, v)
    // is a critical factorization, so is (reverse(v), reverse(u)).
    //
    // For the reverse case we have computed a critical factorization x = u' v'
    // (field `crit_pos_back`). We need |u| < period(x) for the forward case and
    // thus |v'| < period(x) for the reverse.
    //
    // To search in reverse through the haystack, we search forward through
    // a reversed haystack with a reversed needle, matching first u' and then v'.
    #[inline]
    fn next_back<A: Eq, S>(&mut self, haystack: &[A], needle: &[A], long_period: bool)
        -> S::Output
        where S: TwoWayStrategy
    {
        // `next_back()` uses `self.end` as its cursor -- so that `next()` and `next_back()`
        // are independent.
        let old_end = self.end;
        'search: loop {
            // Check that we have room to search in
            // end - needle.len() will wrap around when there is no more room,
            // but due to slice length limits it can never wrap all the way back
            // into the length of haystack.
            match haystack.get(self.end.wrapping_sub(needle.len())) {
                Some(_) => (),
                None => {
                    self.end = 0;
                    return S::rejecting(0, old_end);
                }
            };

            if S::use_early_reject() && old_end != self.end {
                return S::rejecting(self.end, old_end);
            }

            // See if the left part of the needle matches
            let crit = if long_period { self.crit_pos_back }
                       else { cmp::min(self.crit_pos_back, self.memory_back) };
            for i in (0..crit).rev() {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.crit_pos_back - i;
                    if !long_period {
                        self.memory_back = needle.len();
                    }
                    continue 'search;
                }
            }

            // See if the right part of the needle matches
            let needle_end = if long_period { needle.len() }
                             else { self.memory_back };
            for i in self.crit_pos_back..needle_end {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.period;
                    if !long_period {
                        self.memory_back = self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.end - needle.len();
            // Note: sub self.period instead of needle.len() to have overlapping matches
            self.end -= needle.len();
            if !long_period {
                self.memory_back = needle.len();
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Compute the maximal suffix of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u, v) of `arr`.
    //
    // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the
    // period of v.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    #[inline]
    pub fn maximal_suffix<A: Ord>(arr: &[A], order_greater: bool) -> (usize, usize) {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
                            // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper

        while let Some(a) = arr.get(right + offset) {
            // `left` will be inbounds when `right` is.
            let b = &arr[left + offset];
            if (*a < *b && !order_greater) || (*a > *b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if *a == *b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        (left, period)
    }

    // Compute the maximal suffix of the reverse of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u', v') of `arr`.
    //
    // Returns `i` where `i` is the starting index of v', from the back;
    // returns immedately when a period of `known_period` is reached.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    pub fn reverse_maximal_suffix<A: Ord>(arr: &[A], known_period: usize,
                                          order_greater: bool) -> usize
    {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
                            // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper
        let n = arr.len();

        while right + offset < n {
            let a = &arr[n - (1 + right + offset)];
            let b = &arr[n - (1 + left + offset)];
            if (*a < *b && !order_greater) || (*a > *b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if *a == *b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
            if period == known_period {
                break;
            }
        }
        debug_assert!(period <= known_period);
        left
    }
}

// TwoWayStrategy allows the algorithm to either skip non-matches as quickly
// as possible, or to work in a mode where it emits Rejects relatively quickly.
trait TwoWayStrategy {
    type Output;
    fn use_early_reject() -> bool;
    fn rejecting(usize, usize) -> Self::Output;
    fn matching(usize, usize) -> Self::Output;
}

/// Skip to match intervals as quickly as possible
enum MatchOnly { }

impl TwoWayStrategy for MatchOnly {
    type Output = Option<(usize, usize)>;

    #[inline]
    fn use_early_reject() -> bool { false }
    #[inline]
    fn rejecting(_a: usize, _b: usize) -> Self::Output { None }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output { Some((a, b)) }
}

#[cfg(feature = "pattern")]
/// Emit Rejects regularly
enum RejectAndMatch { }

#[cfg(feature = "pattern")]
impl TwoWayStrategy for RejectAndMatch {
    type Output = SearchStep;

    #[inline]
    fn use_early_reject() -> bool { true }
    #[inline]
    fn rejecting(a: usize, b: usize) -> Self::Output { SearchStep::Reject(a, b) }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output { SearchStep::Match(a, b) }
}


#[cfg(feature = "pattern")]
#[cfg(test)]
impl<'a, 'b> StrSearcher<'a, 'b> {
    fn twoway(&self) -> &TwoWaySearcher {
        match self.searcher {
            StrSearcherImpl::TwoWay(ref inner) => inner,
            _ => panic!("Not a TwoWaySearcher"),
        }
    }
}

#[cfg(feature = "pattern")]
#[test]
fn test_basic() {
    let t = StrSearcher::new("", "aab");
    println!("{:?}", t);
    let t = StrSearcher::new("", "abaaaba");
    println!("{:?}", t);
    let mut t = StrSearcher::new("GCATCGCAGAGAGTATACAGTACG", "GCAGAGAG");
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new("GCATCGCAGAGAGTATACAGTACG", "GCAGAGAG");
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new("banana", "nana");
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }
}

#[cfg(feature = "pattern")]
#[cfg(test)]
fn contains(hay: &str, n: &str) -> bool {
    let mut tws = StrSearcher::new(hay, n);
    loop {
        match tws.next() {
            SearchStep::Done => return false,
            SearchStep::Match(..) => return true,
            _ => { }
        }
    }
}

#[cfg(feature = "pattern")]
#[cfg(test)]
fn contains_rev(hay: &str, n: &str) -> bool {
    let mut tws = StrSearcher::new(hay, n);
    loop {
        match tws.next_back() {
            SearchStep::Done => return false,
            SearchStep::Match(..) => return true,
            rej => { println!("{:?}", rej); }
        }
    }
}


#[cfg(feature = "pattern")]
#[test]
fn test_contains() {
    let h = "";
    let n = "";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));

    let h = "BDC\0\0\0";
    let n = "BDC\u{0}";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));


    let h = "ADA\0";
    let n = "ADA";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));

    let h = "\u{0}\u{0}\u{0}\u{0}"; 
    let n = "\u{0}";
    assert!(contains(h, n));
    assert!(contains_rev(h, n));
}

#[cfg(feature = "pattern")]
#[test]
fn test_rev_2() {
    let h = "BDC\0\0\0";
    let n = "BDC\u{0}";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    println!("{:?}", h.contains(&n));

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "aabaabx";
    let n = "aabaab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 2);
    assert_eq!(t.twoway().crit_pos_back, 5);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "abababac";
    let n = "ababab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 1);
    assert_eq!(t.twoway().crit_pos_back, 5);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "abababac";
    let n = "abab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "baabbbaabc";
    let n = "baabb";
    let t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 3);
    assert_eq!(t.twoway().crit_pos_back, 3);

    let h = "aabaaaabaabxx";
    let n = "aabaaaabaa";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "babbabax";
    let n = "babbab";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);
    assert_eq!(t.twoway().crit_pos, 2);
    assert_eq!(t.twoway().crit_pos_back, 4);

    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let h = "xacbaabcax";
    let n = "abca";
    let mut t = StrSearcher::new(h, n);
    assert_eq!(t.next_match_back(), Some((5, 9)));

    let h = "xacbaacbxxcba";
    let m = "acba";
    let mut s = StrSearcher::new(h, m);
    assert_eq!(s.next_match_back(), Some((1, 5)));
    assert_eq!(s.twoway().crit_pos, 1);
    assert_eq!(s.twoway().crit_pos_back, 2);
}

#[cfg(feature = "pattern")]
#[test]
fn test_rev_unicode() {
    let h = "ααααααβ";
    let n = "αβ";
    let mut t = StrSearcher::new(h, n);
    println!("{:?}", t);

    loop {
        match t.next() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }

    let mut t = StrSearcher::new(h, n);
    loop {
        match t.next_back() {
            SearchStep::Done => break,
            m => println!("{:?}", m),
        }
    }
}

#[test]
fn maximal_suffix() {
    assert_eq!((2, 1), TwoWaySearcher::maximal_suffix(b"aab", false));
    assert_eq!((0, 3), TwoWaySearcher::maximal_suffix(b"aab", true));

    assert_eq!((0, 3), TwoWaySearcher::maximal_suffix(b"aabaa", true));
    assert_eq!((2, 3), TwoWaySearcher::maximal_suffix(b"aabaa", false));

    assert_eq!((0, 7), TwoWaySearcher::maximal_suffix(b"gcagagag", false));
    assert_eq!((2, 2), TwoWaySearcher::maximal_suffix(b"gcagagag", true));

    // both of these factorizations are critial factorizations
    assert_eq!((2, 2), TwoWaySearcher::maximal_suffix(b"banana", false));
    assert_eq!((1, 2), TwoWaySearcher::maximal_suffix(b"banana", true));
    assert_eq!((0, 6), TwoWaySearcher::maximal_suffix(b"zanana", false));
    assert_eq!((1, 2), TwoWaySearcher::maximal_suffix(b"zanana", true));
}

#[test]
fn maximal_suffix_verbose() {
    fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) {
        let mut left: usize = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        macro_rules! asstr {
            ($e:expr) => (::std::str::from_utf8($e).unwrap())
        }

        while let Some(&a) = arr.get(right + offset) {
            // `left` will be inbounds when `right` is.
            debug_assert!(left <= right);
            let b = unsafe { *arr.get_unchecked(left + offset) };
            println!("str={}, l={}, r={}, offset={}, p={}", asstr!(arr), left, right, offset, period);
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        println!("str={}, l={}, r={}, offset={}, p={} ==END==", asstr!(arr), left, right, offset, period);
        (left, period)
    }

    fn reverse_maximal_suffix(arr: &[u8], known_period: usize, order_greater: bool) -> usize {
        let n = arr.len();
        let mut left: usize = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        macro_rules! asstr {
            ($e:expr) => (::std::str::from_utf8($e).unwrap())
        }

        while right + offset < n {
            // `left` will be inbounds when `right` is.
            debug_assert!(left <= right);
            let a = unsafe { *arr.get_unchecked(n - (1 + right + offset)) };
            let b = unsafe { *arr.get_unchecked(n - (1 + left + offset)) };
            println!("str={}, l={}, r={}, offset={}, p={}", asstr!(arr), left, right, offset, period);
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
                if period == known_period {
                    break;
                }
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        println!("str={}, l={}, r={}, offset={}, p={} ==END==", asstr!(arr), left, right, offset, period);
        debug_assert!(period == known_period);
        left
    }

    assert_eq!((2, 2), maximal_suffix(b"banana", false));
    assert_eq!((1, 2), maximal_suffix(b"banana", true));
    assert_eq!((0, 7), maximal_suffix(b"gcagagag", false));
    assert_eq!((2, 2), maximal_suffix(b"gcagagag", true));
    assert_eq!((2, 1), maximal_suffix(b"bac", false));
    assert_eq!((1, 2), maximal_suffix(b"bac", true));
    assert_eq!((0, 9), maximal_suffix(b"baaaaaaaa", false));
    assert_eq!((1, 1), maximal_suffix(b"baaaaaaaa", true));

    assert_eq!((2, 3), maximal_suffix(b"babbabbab", false));
    assert_eq!((1, 3), maximal_suffix(b"babbabbab", true));

    assert_eq!(2, reverse_maximal_suffix(b"babbabbab", 3, false));
    assert_eq!(1, reverse_maximal_suffix(b"babbabbab", 3, true));

    assert_eq!((0, 2), maximal_suffix(b"bababa", false));
    assert_eq!((1, 2), maximal_suffix(b"bababa", true));

    assert_eq!(1, reverse_maximal_suffix(b"bababa", 2, false));
    assert_eq!(0, reverse_maximal_suffix(b"bababa", 2, true));

    // NOTE: returns "long period" case per = 2, which is an approximation
    assert_eq!((2, 2), maximal_suffix(b"abca", false));
    assert_eq!((0, 3), maximal_suffix(b"abca", true));

    assert_eq!((3, 2), maximal_suffix(b"abcda", false));
    assert_eq!((0, 4), maximal_suffix(b"abcda", true));

    // "aöa"
    assert_eq!((1, 3), maximal_suffix(b"acba", false));
    assert_eq!((0, 3), maximal_suffix(b"acba", true));
    //assert_eq!(2, reverse_maximal_suffix(b"acba", 3, false));
    //assert_eq!(0, reverse_maximal_suffix(b"acba", 3, true));
}

#[cfg(feature = "pattern")]
#[test]
fn test_find_rfind() {
    fn find(hay: &str, pat: &str) -> Option<usize> {
        let mut t = pat.into_searcher(hay);
        t.next_match().map(|(x, _)| x)
    }

    fn rfind(hay: &str, pat: &str) -> Option<usize> {
        let mut t = pat.into_searcher(hay);
        t.next_match_back().map(|(x, _)| x)
    }

    // find every substring -- assert that it finds it, or an earlier occurence.
    let string = "Việt Namacbaabcaabaaba";
    for (i, ci) in string.char_indices() {
        let ip = i + ci.len_utf8();
        for j in string[ip..].char_indices()
                             .map(|(i, _)| i)
                             .chain(Some(string.len() - ip))
        {
            let pat = &string[i..ip + j];
            assert!(match find(string, pat) {
                None => false,
                Some(x) => x <= i,
            });
            assert!(match rfind(string, pat) {
                None => false,
                Some(x) => x >= i,
            });
        }
    }
}